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Abstract

We study two of the most central classical optimization problems, namely the Traveling Salesman

problems and Graph Partitioning problems and develop new approximation algorithms for them.

We introduce several new techniques for rounding a fractional solution of a continuous relaxation of

these problems into near optimal integral solutions. The two most notable of those are the maximum

entropy rounding by sampling method and a novel use of higher eigenvectors of graphs.
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Chapter 1

Introduction

Optimization problems arise in a wide range of fields including logistics, planning, marketing, adver-

tising, and policy-making. The amount of data collected and stored of our daily activities is growing

rapidly and requires better exploitation of our computing power. Better utilization of this data can

result in billions of dollars of revenue in advertising, health care, finance, and many other disciplines.

However, as of now, computing an optimal solution using simple exhaustive search algorithms would

require trillions of years to compute an optimal solution even if they were to use all the computing

power ever built by mankind. Hence, we are faced with the challenge to develop mathematical tools

that help us design efficient algorithms to determine an optimal or near optimal solution.

The main focus of this thesis is to study the approximability of classical NP-hard optimization

problems. This area of research arises from the fact that many important problems are known to be

NP-hard, i.e., under standard conjectures [For09] they cannot be solved optimally in polynomial time.

Instead, one can hope to find an approximate solution, one that is not optimal, but is guaranteed

to be within a small factor from the optimal solution.

We say a polynomial time algorithm is an α approximation for a minimization problem if the

output of the algorithm is within a factor α of the optimum in the worst case. The most common

approach in designing approximation algorithms involves four main steps:

i) Formulate the problem as an integer program.

ii) Relax the integrality constraint and obtain a convex (linear) relaxation of the problem.

iii) Compute an optimal fractional solution to the continuous relaxation.

iv) Round the fractional solution to an integer solution.

There are several ways to write a continuous relaxation for discrete optimization problems. Of these,

the most well known are the linear programing relaxations and semi-definite programming relax-

ations. For most of these methods, the first three steps outlined above can be taken systematically.

2
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but the last step is the most challenging. The main goal of this thesis is to address this difficult

last step: specifically, to develop new techniques for rounding fractional solutions of an optimization

problem.

Over the last thirty years, several methods have been proposed for rounding a fractional solution

of a linear or a semidefinite programming relaxation of discrete optimization problems. One of the

first was Raghavan and Thompsons randomized rounding approach [RT87] (see Section 3.1 for a

brief overview). More recent ones include the iterative rounding method [Jai01, LRS11] and the

hyperplane rounding method [GW95, ARV09].

In the first part of this thesis we study several variants of the well-known Traveling Salesman

Problem. We propose a new rounding method, called maximum entropy rounding by sampling

method, to round a fractional solution of the Linear Programming relaxation of TSP into a near

optimal integral solution. This method has also been used in several other contexts in the last couple

of years.

In the second part of this thesis we focus on spectral algorithms. The existence of efficient al-

gorithms to compute the eigenvectors and eigenvalues of graphs (see Section 7.6) supplies a useful

tool for the design of efficient graph algorithms. Eigenvectors of a graph are optimizers of a con-

tinuous relaxation of graph partitioning problems (see Subsection 7.7.1). In fact, one can write a

semi-definite programming relaxation of multiway partitioning problems such that the optimizers

are the eigenvectors of the graph. Cheeger’s inequality [AM85, Alo86] graph coloring algorithms

[AK97] or maximum cut algorithms [Tre09] provide a threshold rounding algorithm to round the

second or the last eigenvector of a graph into an integral cut (see Section 7.8 for more details). But

there are no generalizations of these algorithms to higher eigenvectors of graphs.

In the second half of this thesis we design new rounding algorithms that find an integral k-way

partitioning of a graph using the first k eigenvectors. Our rounding algorithms provide a rigor-

ous justification for several practical spectral algorithms that use these eigenvectors. Furthermore,

using our knowledge of higher eigenvalues we manage to improve Cheeger’s inequality, we design

faster spectral graph algorithms and provide new graph partitioning algorithms with better quality

solutions.

In Section 1.1 we provide an overview of Part I and in Section 1.2 we provide an overview of

Part II.

1.1 New Approximation Algorithms to the Traveling Sales-

man Problem

The Traveling Salesman Problem (TSP) is perhaps the most well known problem in the areas of

approximation algorithms and combinatorial optimization. Today, TSP has applications in planning,

scheduling, manufacturing of microchips, and genome sequencing (see [ABCC07] for details), but
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it has actually been of keen interest since the very first studies in the fields of Combinatorics and

Graph Theory. In the 18th century Euler introduced The Knight’s Tour problem on a chessboard,

and in the 19th century Hamilton and Kirkman studied Hamiltonian paths in various classes of

graphs [Big81].

In the field of computing, many significant developments have been sparked by TSP. Just a

few examples: solving an instance of TSP led to one of the first applications of linear and integer

programming techniques [DFJ54, DFJ59]; one of the first approximation algorithms ever developed

was the 3/2 approximation algorithm of Christofides for TSP [Chr76]; one of the first average case

analyses was the work of Karp on TSP [Kar77, Kar79]. TSP was also one of the first problems

proved to be NP-complete [Kar72].

In an instance of TSP we are given a set V of n cities with their pairwise symmetric distances. The

goal is to find the shortest tour that visits each city at least once. It is NP-hard to approximate TSP

with a factor better than 185/184 [Lam12]. Christofides designed a 3/2 approximation algorithm for

TSP in 1976 [Chr76], and subsequently no one has succeeded in beating the 3/2 factor despite the

fact that many researchers have tried [Wol80, SW90, BP91, Goe95, CV00, GLS05, BEM10, BC11,

SWvZ12]. It remains one of the central open problems in the field of computing. One of the major

achievements of this thesis is the first significant advance in solving this problem in over 35 years

Before describing our ideas, we must first describe previous work on this problem. Observe that

any Hamiltonian cycle is in the intersection of the spanning tree polytope1 and the perfect matching

matching polytope of the input graph. It turns out that both of these polytopes are integral and

it is easy to optimize any function over them (see Subsection 2.4.2 for background). So the main

question is how to optimize a cost function on both of these polytopes simultaneously.

Researchers have employed two general approaches in attacking TSP or an important variant,

Asymmetric TSP [Chr76, FGM82, Blä02, GLS05, KLSS05, FS07].

i) Start with a minimum cost connected subgraph, i.e., a minimum cost spanning tree, and then

add edges and make it Eulerian.

ii) Start with a Eulerian subgraph, i.e., a minimum cost cycle cover, then add edges while preserving

the Eulerian-ness until it becomes connected.

We say a subgraph is Eulerian if the degree of each vertex is even and we say a subgraph is connected

if it includes a spanning tree. There are two general approaches that researches employed in attacking

TSP [Chr76, FGM82]:

Again, these are the main two approaches people have applied to TSP. For example, the Christofides

3/2 approximation algorithm uses approach (i).

1If we want to be precise, a Hamiltonian cycle is in the 1-tree polytope, where a 1-tree is a union of a spanning
tree and a single other edge.
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1.1.1 Our Contributions

All of our new approximation algorithms for different variants of TSP are examples of approach (i),

and from this point forward our discussion will be restricted to approach (i). Since the matching

polytope is integral, there is an efficient algorithm that for any given connected subgraph finds the

minimum cost Eulerian augmentation of that subgraph, i.e., the minimum cost set of edges to make

it Eulerian. But the cost of the Eulerian augmentation strongly depends on the structure of the

connected subgraph that we choose in the first step. The main new ingredient of our works is a new

method to round a fractional solution of the Linear Programming relaxation of TSP into a random

spanning tree. We show that a tree chosen from such a distribution preserves many properties

of the fractional solution with high probability. Consequently, we can argue that the cost of the

Eulerian augmentation corresponding to that tree is significantly smaller than the cost of a Eulerian

augmentation of an arbitrary minimum spanning tree.

Next, we describe a brief outline of our method that rounds any feasible solution of the LP

relaxation of TSP into a random spanning tree. We call this method, the rounding by sampling

method. First, we interpret an optimal solution of the LP relaxation as a convex combination of

the extreme point solutions of an integral polytope - in the case of TSP, a convex combination of

the integral spanning trees of the input graph. This convex combination defines a distribution over

extreme points. We then sample an extreme point from the underlying distribution and augment it

into an integral solution of the problem.

Our main idea is to choose a convex combination of extreme points that has the maximum

entropy. Intuitively, we avoid imposing any additional structure by keeping the combinatorial struc-

ture intact while maximizing the uncertainty. We use the following convex program to compute the

maximum entropy distribution:

max
∑
T

−pT log(pT )∑
T3e

pT = ze ∀e ∈ E,

pT ≥ 0 ∀T.

In the above program, z represents a fractional point inside the spanning tree polytope, and pT

represents the probability of selecting an extreme point of the spanning tree polytope, which in this

case is a spanning tree T . We prove that the optimizer of this program can be interpreted as a

weighted uniform distribution on spanning trees (see Section 3.1 for details), and that it can be

approximated efficiently (see Subsection 3.1.2).

In summary, our machinery implies that a fractional solution of the LP relaxation of TSP can be

efficiently written as a random spanning tree distribution. This allows us to use many properties of

the random spanning tree distributions that have been studied for decades by mathematicians (see
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Algorithm pa561 si535 si1032
Christofides 1.21 1.24 1.07

Rounding by Sampling 1.09 1.05 1.003
Lin-Kernighan Heuristic 1.009 1.0007 1.0008

Table 1.1.1

Section 2.8 and Section 2.9 for more details). For example, we can show that, with high probability,

at least 1/3 of the vertices of a tree sampled from this distribution are even.

We have applied the above machinery to various classes of problems including the Traveling

Salesman Problem [AGM+10, OSS11], the Online Stochastic Matching Problem [MOS11], and the

Minimum Strongly Connected Subgraph Problem [LOS12]. As a simple inspiring example, in Sub-

section 1.1.2 we describe a simple algorithm as an application of the rounding by sampling method

to the online stochastic matching problem. Next, we explain the main results that we will provide

in Part I.

Symmetric TSP: In a joint work with Saberi and Singh [OSS11], we designed a 3/2− ε approxi-

mation algorithm for TSP on graphic metrics, breaking the 3/2 barrier of Christofides [Chr76] where

ε > 0 is a universal constant. Graphic metrics are the cost functions corresponding to the shortest

path metric of an unweighted graph (see Section 2.1 for more details).

Our algorithm is very simple to describe: it chooses a random spanning tree based on the

solution of the LP relaxation using the rounding by sampling method. Then it adds the minimum

cost matching on the odd degree vertices of the tree (see Algorithm 9).

Our analysis, on the other hand, is sophisticated. It builds on properties of uniform spanning

tree distributions Section 2.8 and polygon representation of near minimum cuts Section 2.7. Very

recently, Borcea, Branden and Liggett [BBL09] used tools from complex geometry and proved that

strongly Rayleigh measures that are a generalization of uniform spanning tree measures satisfy the

strongest forms of negative dependence and are closed under certain operations Section 2.9. These

properties are one of the fundamental parts of our analysis. As a byproduct of our results, we show

new properties of near minimum cuts of any graph in Section 3.2, and new properties of random

spanning tree distributions in Section 3.3.

Although we only prove that our algorithm beats Christofides’ 3/2 approximation algorithm on

graphic metrics, we conjecture that its approximation factor is strictly better than 3/2 in the worst

case. We also compared our algorithm with Christofides’ algorithm and one of the best heuristics

for TSP, namely the Lin-Kernighan Heuristic on several of the test cases of the public TSP library,

TSPLIB2. The result of the comparison is shown in Table 1.1.1. Each column label is the name

of a test case of TSPLIB. Each entry of the table represents the ratio of the cost of the solution

computed by an algorithm with respect to the cost of the optimum solution of the LP relaxation.

2The test cases can be downloaded from http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html.

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
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Observe that our algorithm performs significantly better than Christofides’ algorithm but it cannot

beat the Lin-Kernighan Heuristic. One explanation is that the heuristics usually implement the best

of many ideas.

Asymmetric Traveling Salesman Problem (ATSP): ATSP is a generalization of TSP in

which the distances between the vertices need not be symmetric. In a joint work with Asadpour,

Goemans, Madry and Saberi [AGM+10], we designed an O(log n/ log log n) approximation algorithm

for ATSP, breaking the O(log n) barrier developed in 1982 [FGM82]. The algorithm is very similar

to our algorithm for the TSP that we described above. The main difference is in the computation of

the minimum cost Eulerian augmentation. In this case, the minimum cost Eulerian augmentation

of a given spanning tree can be computed efficiently by solving a minimum cost flow problem (see

Algorithm 6 for details). Also, in a joint work with Saberi [OS11], we managed to design the first

constant factor approximation algorithm ATSP on planar or bounded-genus graphs.

Part I of this thesis is organized as follows. In Chapter 2 we provide background on convex opti-

mization, matroids, linear programming relaxations, structure of minimum cuts and near minimum

cuts, properties of random spanning trees and strongly Rayleigh measures. Chapter 3 is specifically

organized to provide new machineries developed in this part of the thesis that we expect to see in

several applications in the future. We describe the rounding by sampling method in Section 3.1,

new properties of near minimum cuts in Section 3.2, and new properties of random spanning trees in

Section 3.3. We provide our O(log n/ log log n) approximation algorithm for ATSP in Chapter 4 and

our constant factor approximation for planar ATSP in Chapter 5. Finally, in Chapter 6 we provide

our 3/2− ε approximation algorithm for graphic TSP.

1.1.2 Rounding by Sampling and Online Stochastic Matching Problem

The goal of this section is to provide a simple and inspiring application of the rounding by sampling

method in a very different context. We design a very simple algorithm for the Online Stochastic

Matching Problem that beats the previous algorithm Feldman et al. [FMMM09]. The result of this

section is based on a joint work with Vahideh Manshadi and Amin Saberi [MOS11].

The online stochastic matching problem proposed by Feldman et al. [FMMM09] as a model of

display ad allocation. We are given a bipartite graph G(A,B,E); where B represent one side of

the graph corresponds to a fixed set of n bins and A represent the other side which is a set of n

possible ball types. At each time step 1, 2, . . . , n a ball of type a ∈ A is chosen independently at

random (with replacement). The algorithm can assign this ball to at most one of the empty bins

that are adjacent to it; each bin can be matched to at most one ball. The goal of the algorithm is

to maximize the expected number of non-empty bins at time n.

We compare the expected size of the matching computed by an algorithm to the optimum offline

solution, the expected size of the maximum matching of the revealed graph at time n. Given the
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sequence of arrived balls ω = (a1, a2, . . . , an), one can compute the optimum allocation in polynomial

time by solving a maximum matching problem. Let fω : E → {0, 1} be the indicator function of

edges that are used in the optimum allocation given ω.

Let OPT(ω) = 〈1, fω〉 be the size of the maximum matching and ALG(ω) be the size of a

matching computed by an online algorithm ALG. The competitive ratio of ALG is defined as E[ALG(ω)]
E[OPT(ω)] .

turns out that the algorithms that we study in this section ALG(ω) and OPT(ω) are concentrated

around their expected values, therefore the above competitive ratio is fairly robust. Feldman, Mehta,

Mirrokni and Muthukrishnan [FMMM09] designed an algorithm with competitive ratio of 0.67 for

the online stochastic matching problem. In this section we use the rounding by sampling method to

design a very simple algorithm with competitive ratio of 0.68.

Our algorithm crucially uses the optimum offline solution for making decisions. For any edge e

let f(e) := E [fω(e)]. Also, let us abuse the notation and use f(b) :=
∑
a:(a,b)∈E f(a, b).

It turns out that f is in the matching polytope of G, i.e., the vector z where ze = f(e) is a

feasible solution of the following linear program.∑
b:(a,b)∈E

za,b ≤ 1 ∀a ∈ A,

∑
a:(a,b)∈E

za,b ≤ 1 ∀b ∈ B,

ze ≥ 0 ∀e ∈ E.

(1.1.1)

Fact 1.1.1. The optimum offline solution f is in the matching polytope of G.

Proof. Given ω and a ∈ A, letNω(a) be the number of balls of type a in ω. Clearly
∑
b:(a,b)∈E fω(a, b) ≤

Nω(a). Taking expectations from both sides show that
∑
b:(a,b)∈E f(a, b) ≤ 1. where we used the

fact that each ball type is sampled once in expectation. On the other hand, since in any instance of

the problem any bin y can be matched to at most one ball,
∑
a:(a,b)∈E f(a, b) ≤ 1. So, f(.) is in the

matching polytope of G.

Since the matching polytope is integral, f(.) can be written as a convex combination of bipartite

matchings ofG (see Section 2.2 for background on polytopes and extreme point solutions). Therefore,

using standard algorithmic versions of Caratheodory’s theorem (see e.g. [GLS93, Theorem 6.5.11])

we can decompose a f(.) into a convex combination of polynomially many bipartite matchings in

polynomial time. More specifically, we obtain the following:

Lemma 1.1.2. It is possible to efficiently and explicitly construct (and sample from) a distribution

µ on the set of matchings in G such that

PM∼µ [e ∈M ] = f(e), ∀e ∈ E.
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Algorithm.

Our algorithm has some similarities with the online algorithm that Feldman et al. [FMMM09]

proposed. Both algorithms start by computing two matchings M1 and M2 offline; When the first

ball of type a arrives it will be allocated to the bin matched to a in M1, and when the second ball

arrives, we will allocate it via M2. If the corresponding bins are already full, we drop the ball. Note

that the probability that there are more than two balls of each type a in the sequence of arrivals is

very small.

The main difference is in the construction of M1,M2. Roughly speaking, one would like that

M1,M2 are disjoint and |M1|, |M2| is as large as possible. So, if G has two disjoint maximum

matchings one can try to find them and use them in the algorithm. But the main difficulty is when

G does not have two disjoint maximum matching. Feldman et al. find M1 and M2 by carefully

decomposing the solution of a maximum 2-flow of G into two disjoint matchings. They have to go

into an extensive case analysis to adjust the size of these matchings. Here, we use the rounding by

sampling method to choose M1,M2. Recall that we have written f as a distribution of matchings

µ. First note that EM∼µ [|M |] =
∑
e f(e) = E [OPT]. So any sample from µ is as large as OPT

in expectation. To make sure that M1,M2 share the least number of edges we just sample two

matchings independently from µ. The details of the final algorithm is described below.

Algorithm 1 The Online Stochastic Matching Algorithm

Offline Phase:
Compute the fractional matching f , and the distribution µ using [GLS93, Theorem 6.5.11].
Sample two matchings M1 and M2 from µ independently; set M1 (M2) to be the first (second)
priority matching.

Online Phase:
When the first ball of type a arrives, allocate it through the first priority matching, M1.
When a ball of type a arrives for the second time, allocate it through the second priority matching,
M2.

We prove the following theorem.

Theorem 1.1.3. The competitive ratio of Algorithm 1 is at least 0.684.

Analysis.

Throughout the analysis we drop the terms of O(1/n). Let Xb be the random variable indicating the

event that bin b is matched with a ball during the run of the algorithm. We analyze the competitive

ratio of the algorithm by lower bounding E [Xb] /f(b) for all b ∈ B,

E [ALG]

E [OPT]
=

∑
b∈B E [Xb]∑
b∈B f(b)

≥ min
b∈B

E [Xb]

f(b)
.

For b ∈ B, a ∈ A we abuse notation and use M1(b) := {a} if (a, b) ∈M1, and if b is not saturated
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in M1, we let M1(b) := ∅; similarly we define M2(b). Given M1 and M2, E [Xb|M1,M2] can be

computed similar to [FMMM09, Section 4.2.2],

E [Xb |M1,M2] ≈



0 if M1(b) = M2(b) = ∅

1− 1/e if M1(b) 6= ∅,M1(b) = M2(b)

1− 1/e if M1(b) 6= ∅,M2(b) = ∅

1− 2/e if M1(b) = ∅,M2(b) 6= ∅

1− 2/e2 if M1(b) 6= ∅,M2(b) 6= ∅,M1(b) 6= M2(b).

(1.1.2)

Let us describe the fourth case, say M1(b) = ∅,M2(b) = a for some a ∈ A: in this case b is matched

if and only if at least two balls of type a arrive. Let Nω(a) be the number of balls of type a in the

arriving sequence ω. Then,

E [Xb |M1(b) = ∅,M2(b) = a] = P [Nω(a) ≥ 2] = 1− P [Nω(a) = 0]− P [Nω(a) = 1]

= 1−
(

1− 1

n

)n
− 1

n

(
n

1

)(
1− 1

n

)n−1

= 1− 2

e
.

where we dropped a term of O(1/n) in the RHS.

For a bin b ∈ B let δ(b) be the set of edges adjacent to b. Since we choose M1,M2 independently

at random,

E [Xb] = (1− 1/e)
∑

(a,b)∈δ(b)

P [M1(b) = a] · P [M2(b) = a or M2(b) = ∅]

+(1− 2/e)
∑

(a,b)∈δ(b)

P [M1(b) = ∅] · P [M2(b) = a]

+(1− 2/e2)
∑

(a,b),(a′,b)∈δ(b),a 6=a′
P [M1(b) = a] · P [M2(b) = a′]

= (1− 1/e)
∑
e∈δ(b)

f(e)(1− f(b) + f(e)) + (1− 2/e)
∑
e∈δ(b)

f(e)(1− f(b))

+(1− 2/e2)
∑

e,e′∈δ(b)
e 6=e′

f(e)f(e′)

= f(b)(2− 3/e)− f(b)2(1 + 2/e2 − 3/e)− (1/e− 2/e2)
∑
e∈δ(b)

f(e)2

where in the second inequality we used Lemma 1.1.2, in the last equality we used
∑
e∈δ(b) f(e) = f(b).



www.manaraa.com

CHAPTER 1. INTRODUCTION 11

It remains to prove a lower bound the RHS of the above equation. We show,

E [Xb]

f(b)
= (2− 3/e)− (1 + 2/e2 − 3/e)fb − (1/e− 2/e2)

∑
e∈δ(b) f

2
e

fb
≥ 0.684 (1.1.3)

Let us first fix fb and find the minimum of the LHS in terms of fb. For any fb, the LHS is minimized

when
∑
e∈δ(b) f

2
e is maximized. Consider any k edges (a1, b), . . . , (ak, b).

k∑
i=1

f(ai, b) ≤ P

[
k∑
i=1

Nω(ai) ≥ 1

]
= 1− P

[
k∑
i=1

Nω(ai) = 0

]
= 1− (1− k/n)n = 1− 1/ek.

For example, it follows that maxe∈δ(b) f(e) ≤ min{f(b), 1−1/e}. With the above constraint, it is easy

to see that the LHS of (1.1.3) is minimized when fb = 1, otherwise we may add a dummy ball type

a ∈ A, and connect it to b by an edge e = (a, b) with very small probability, f(e) = ε, and see that

this only decreases the value of LHS. If f(b) = 1, then by the above equation
∑
e∈δ(b) f(e)2 ≤ 0.463.

Plugging this into (1.1.3) completes the proof of Theorem 1.1.3.

1.2 New Analysis of Spectral Graph Algorithms through Higher

Eigenvalues

Spectral graph algorithms are simple heuristics that explore the structure of a graph using eigenvalues

and eigenvectors of the adjacency matrix of the graph or any of its normalizations like the Laplacian

or the normalized Laplacian matrix. These algorithms are widely used in practice because they

typically run in near linear time, provide high quality solutions, and with the aid of a linear algebra

library are very simple to implement.

In practical applications spectral graph algorithms, like a strong hammer, have been used to

attack problems in a variety of areas including Image Segmentation [SM00, YGS02, YS03, BJ03,

TM06], data clustering [NJW02, BH03], community detection [DM05, WS05, SC10] and VLSI design

[CSZ94, AKY95]. Although spectral graph algorithms are very simple to implement, they are non-

trivial and interesting; and although these algorithms are widely used in practice, we still do not

have a rigorous justification for their performance.

1.2.1 Spectral Clustering Algorithm

Let us describe an application of spectral graph algorithms in data clustering. Clustering is one

of the fundamental primitives in machine learning and data analysis with a variety of applications

in information retrieval, pattern recognition, recommendation systems, etc. Suppose we have a set

of data points that we want to cluster (see Figure 1.2.1). Suppose the distance between the data

points represents their similarity, i.e., two points are more similar if they get closer to each other. A
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Figure 1.2.1: A natural clustering of the left points divide them into a group of points on the outer
circle and a group on the inner circle. But, it is quite unlikely that a Heuristic like kmeans finds
this clustering. Instead, if we map the vertices based on spectral embedding the points on the outer
circle will map to the blue point on the right and the points on the inner circle map to the red point.
Now we can find the natural clustering using kmeans.

natural clustering of the points in the example of Figure 1.2.1 divides the points into two parts as

we have shown in this figure. However, it is quite unlikely that a heuristic like kmeans recovers this

natural clustering. Recall that kmeans is a clustering heuristic where we map a set of points into k

sets such that each point is mapped to the set with the closest mean.

Data clustering may be modeled as a graph partitioning problem, where one models each of the

data points as a vertex of a graph G = (V,E) and the weight of an edge connecting two vertices

represents the similarity of the corresponding data points. There are many ways to define the graph

G; for example, G can be a complete graph where for any two vertices u, v ∈ V ,

w(u, v) ∝ exp(−‖xu − xv‖2 /σ2) (1.2.1)

where we used xu,xv to denote the coordinates of the points corresponding to u, v and σ > 0 is a

free parameter. To take another example, one can let G be an unweighted graph where there is an

edge between two vertices u, v if and only if ‖xu − xv‖ ≤ ε for some threshold ε > 0.

Once we construct a weighted graph, we can use the spectral graph clustering algorithm to par-

tition the vertices. First we compute multiple eigenfunctions of a normalization of the adjacency

matrix of the graph, called the normalized Laplacian matrix L = I − D−1/2AD−1/2, where I is

the identity matrix, D is the diagonal matrix of vertex degrees, and A is the adjacency matrix.

Say f1, f2, . . . , fk are the eigenfunctions of L corresponding to the first k eigenvalues. The spectral

embedding of G is the function F : V → Rk where for any v ∈ V F (v) := (f1(v), f2(v), . . . , fk(v))

(see Section 8.1 for the properties of spectral embedding). We embed the vertices to a new space

using F (.) and then we run the kmeans on the spectral embedding and we return its output (the

details of the algorithm is described in Algorithm 2). For the example of Figure 1.2.1, the spectral

embedding maps the points of the outer circle close to each other and likewise those of the inner
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circle. Therefore, using the eigenfunctions we managed to change the basis and make the task of

clustering significantly easier for kmeans.

Algorithm 2 Spectral Graph Clustering Algorithm

Input: A graph G = (V,E), and a weight function w : E → R+, k ≥ 2.
Output: A k-partitioning of V .

Let L = I−D−1/2AD−1/2 be the normalized Laplacian where for any u, v ∈ V , A(u, v) = w(u, v).
Let f1, f2, . . . , fk : V → R be an orthonormal set of functions corresponding to the first k eigen-
values of L.
Let F : V → Rk where for any v ∈ V , F (v) := (f1(v), . . . , fk(v)). be the spectral embedding.
Run k-means on the vectors F (v)/ ‖F (v)‖ for all v ∈ V and return its output.

The spectral clustering algorithm that we just described is one of the fundamental tools in data

clustering. An enormous number of articles apply this idea to cluster images, movies, music, web-

pages, etc. We can intuit that the reason people previously used eigenfunctions in this algorithm

is that eigenfunctions can be seen as the optimizers of a continuous relaxation of the graph k-

partitioning problem (see Subsection 7.7.1 for more details). We refer interested readers to a recent

survey by Luxburg [Lux07] for more information.

1.2.2 Spectral Graph Algorithms in Theory

Spectral graph algorithms are one of the fundamental tools in theoretical computer science. From a

very high level point of view, they relate combinatorial properties of graphs to the algebraic properties

of matrices. For example, they relate properties of cuts to the eigenvalues of adjacency matrix or

the Laplacian matrix of the graph (see Subsection 1.2.4 at the end of this section for an inspiring

example). This relation is one of the key insights in various areas of theory including approximation

algorithms [ST96, Kel04, ABS10], probability theory and the analysis of random walks [SJ89, JSV04],

construction of error-correcting codes [Spi96], and complexity theory [RVW00, Rei05].

To the best of our knowledge, all of the classical analyses of spectral graph algorithms only exploit

the first or last two eigenvalues of graphs and relate them to the properties of cuts [AM85, Alo86,

AK97, Tre09]3. Roughly speaking, a classical spectral algorithm works as follows: first we map the

vertices of G to a line using an eigenfunction of L, then we try several possibilities for cutting the

line into two pieces and we choose the best cut that we find. Such algorithms are limited because

they only exploit one dimensional mapping of a graph.

Let us be more specific and describe Cheeger’s inequality, which is one of the most influential

results in the field of spectral graph theory. A basic fact in algebraic graph theory is that the number

of connected components in any undirected graph is equal to the multiplicity of the eigenvalue 0 in

3We remark that in some random/semi-random models there are results that use matrix perturbation theory and
multiple eigenvectors, but here I do not have any assumption on the structure of the graphs there are examples
of spectral algorithms for random or semi-random graphs that use use matrix perturbation theory and multiple
eigenvectors, see e.g., [McS01], but here we do not have any prior assumption on the structure of the graphs.
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the normalized Laplacian matrix of the graph. In particular, a graph is disconnected if and only if

the second eigenvalue of the normalized Laplacian matrix, λ2, is zero. Cheeger’s inequality provides

an ”approximate” version of the latter fact.

Let us first provide a robust version of connectivity. There are several combinatorial measures

for the quality of a multiway partitioning of a graph including diameter, k-center, k-median, con-

ductance, etc. Kannan, Vempala and Vetta [KVV04] show that several of these measures fail to

capture the natural clustering in simple examples. They also argue that conductance is one of the

best objective functions for measuring the quality of a cluster. For a set S ⊆ V , the conductance of

S, φ(S) is the following ratio:

φ(S) :=
|E(S, S)|

vol(S)

where vol(S) is the summation of the degree of vertices of S. The conductance of G,

φ(G) = min
vol(S)≤vol(V )/2

φ(S)

is the minimum conductance among all sets that have at most half of the total volume. Observe that

for any graph G, 0 ≤ φ(G) ≤ 1. Furthermore, if φ(G) ≈ 0, there is a cut (S, S) such that |E(S, S)| �
vol(S), vol(S), so we can say G is almost disconnected (see Section 7.7 for more background on the

conductance).

Cheeger’s inequality for graphs [AM85, Alo86] states that a graph is almost disconnected if and

only if the second smallest eigenvalue of L, λ2, is close to 0. Quantitatively, for any graph G,

λ2/2 ≤ φ(G) ≤
√

2λ2.

Observe the close relation between an algebraic quantity of normalized Laplacian, λ2, and a com-

binatorial property of G, namely the conductance of G. We will provide a detailed proof of this

inequality in Section 7.8.

Cheeger’s inequality has significant applications in graph partitioning [ST96, KVV04], explicit

construction of expander graphs [JM85, HLW06, Lee12], approximate counting [SJ89, JSV04], and

image segmentation [SM00]. The proof of Cheeger’s inequality gives a simple, nearly linear time

algorithm (the spectral partitioning algorithm) that finds cuts with nearly-minimal conductance.

Given an eigenfunction f2 of λ2, the algorithm finds the best threshold cut. That is the cut separating

the vertices where f2(v) ≤ t, for the best threshold t (see Algorithm 10 for details). The spectral

partitioning algorithm is widely used in practice for its efficiency and the high quality of solutions

that it provides [Sim91, HL92, BS93].

Let us summarize the above discussion. Spectral graph algorithms, like strong hammers, have

been used in a variety of problems in practice because they are fast, simple to implement, and provide

high quality solutions. On the other hand, spectral graph algorithms are one of the fundamental
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tools in theory. Although more eigenvalues and eigenfunctions provide better quality solutions in

practice [AKY95], theoretical analyses can only justify and analyze the algorithms that use the

second or the last eigenfunction.

1.2.3 Our Contribution

Our main goal in the second part of this thesis is to close this gap. We will understand higher

eigenvalues of graphs, provide tools to handle them and control them, and of course we will design

new spectral algorithms with our knowledge. Here is a summary of our contribution. We will analyze

several spectral graph algorithms using higher eigenvalues and eigenfunctions. As a consequence of

this we can provide a rigorous justification for the spectral graph clustering algorithms and we can

provide new ideas to improve this algorithm. We also provide faster clustering algorithms and several

new ideas for designing graph clustering algorithms.

Our main machinery in controlling higher eigenvalues of graphs is the same spectral embedding

function that has been used by practitioners for many years. In Section 8.1 we prove several impor-

tant properties of this embedding like isotropy, spreading and the energy and we use these properties

throughout Part II.

Now, let us provide a more detailed list of our contribution. We use λ1 ≤ λ2 ≤ . . . ≤ λn to

denote the eigenvalues of L. We use ρ(k) to denote the k-way conductance constant,

ρ(k) = min
disjoint S1,...,Sk

max
1≤i≤k

φ(Si).

Higher Order Cheeger’s Inequality. In a joint work with Lee and Trevisan [LOT12], we prove

the first generalization of Cheeger’s inequality to higher eigenvalues of a graph. We show that the

vertices of any graph can be partitioned into k subsets each defining a sparse cut, if and only if λk

is close to 0. Quantitatively, for any k ≥ 2,

λk/2 ≤ ρ(k) ≤ O(k2)
√
λk.

Compared to the classical analyses of spectral graph algorithm, our analysis uses high dimensional

embedding of graphs, namely the spectral embedding. We also use several of recent developments in

high dimensional geometry on random partitioning of metric spaces (see Section 7.9 for background).

Our result provides a rigorous justification for the spectral clustering algorithm that we described

in Subsection 1.2.1. In particular, our theorem shows that the spectral graph clustering algorithm

finds a “good” k-partitioning of a given graph if and only if the k-th smallest eigenvalue of the

normalized Laplacian matrix is close to zero. Using our machinery we justify the folklore belief

that the number of clusters, k, in the spectral clustering algorithm must be chosen based on the

largest gap between eigenvalues (see Section 10.3). Our proof also justifies the application of kmeans
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Figure 1.2.2: The set of data points in the top figure is from Jianbo Shi’s website on data clustering,
http://www.cis.upenn.edu/~jshi/software/demo1.html. The goal is to find a coloring of these
points with 4 colors, red, blue, green and yellow such that the points in each cluster have the same
color. We run the spectral graph clustering algorithm on a complete graph G where the weight of
each edge is computed by (1.2.1) for σ := 0.05 maxu,v ‖xu − xv‖. The left figure shows the output of
Algorithm 2, and the right figure shows the output of the modified spectral clustering, Algorithm 3,
where we randomly project the points to a 2 dimensional space and then we use the kmeans Heuristic.

heuristic in the last step of spectral clustering for the graphs where there is a large gap between

successive eigenvalues.

Our analysis provides several new theoretical tools. The first is a new way of upper bounding

higher eigenvalues of graphs by defining a smooth localization of the spectral embedding function (see

Subsection 10.2.1 for more details). The second is a new type of dimension reduction that bypasses

the O(log n) barrier in the well-known dimension reduction of Johnson and Lindenstrauss [JL84].

Specifically, we study dimension reductions from a k dimensional space to an O(log k) dimensional

space and we show that it preserves several properties of spectral embedding (see Section 8.2).

We also provide new ideas to improve the quality of the spectral graph clustering algorithm. Our

analysis suggests randomly projecting the points of the spectral embedding to an O(log k) dimen-

sional space using independently chosen Gaussian vectors and then applying the kmeans algorithm

to the new space. In Figure 1.2.2 we show that in some data clustering examples this idea can

help obtain better quality solutions, but we do not know if this idea always improves the quality of

clustering in practice. We refer to Section 10.6 for details of our algorithm.

http://www.cis.upenn.edu/~jshi/software/demo1.html
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Algorithm 3 Spectral Clustering Algorithm with Dimension Reduction

Input: A graph G = (V,E), and a weight function w : E → R+, k ≥ 2.
Output: A k-partitioning of V .

Let L = I−D−1/2AD−1/2 be the normalized Laplacian where for any u, v ∈ V , A(u, v) = w(u, v).
Let f1, f2, . . . , fk : V → R be an orthonormal set of functions corresponding to the first k eigen-
values of L.
Let F : V → Rk where for any v ∈ V , F (v) := (f1(v), . . . , fk(v)). be the spectral embedding.
Choose l = Θ(log(k)) random k dimensional Gaussian vectors ζ1, . . . , ζl and let

Γ(v) =
1√
l
(〈F (v), ζ1, 〉, 〈F (v), ζ2〉, . . . , 〈F (v), ζl〉)

Run k-means on the vectors Γ(v)/ ‖Γ(v)‖ for all v ∈ V and return its output.

Improved Cheeger Inequality through Higher Order Spectral Gap. In a joint work with

Kwok, Lau, Lee, and Trevisan [KLL+13], we strengthen the right side of Cheeger’s inequality and

we show that for any k ≥ 2,

φ(G) ≤ O(k)
λ2√
λk

Consequently, we can characterize graphs for which the right side of the Cheeger’s inequality is

tight; in all these graphs we must have approximate multiplicity of eigenvalues, i.e., λk ≈ λ2 for all

constant k.

Our result describes why the spectral partitioning algorithm performs significantly better than

the worst case guarantee of Cheeger’s inequality in practical applications. If for a constant k, λk is

bounded away from 0 for some graph G, then the spectral partitioning algorithm provides a constant

factor approximation for the sparsest cut problem. In practical instances of image segmentation,

there are usually only a few outstanding objects in the image, and thus λk is bounded away from 1

for a constant k [SM00].

Almost Optimal Local Graph Clustering. A local graph algorithm is one that finds a solution

around a given vertex of the graph by looking only at the local neighborhood of a vertex. In a joint

work with Trevisan [OT12], we design a local graph clustering algorithm with almost the same

guarantee as the spectral partitioning algorithm. This is the first sublinear (in the size of the input)

time algorithm with almost the same guarantee as the Cheeger’s inequality.

Another advantage of our algorithm is that if there are both large and small sets with near-

optimal conductance, our algorithm is more likely to find the smaller sets. Indeed, for any given

target size k, our local algorithm can find sets of size approximately k with near-minimal sparsity

around the starting vertex. Small communities generally contain more interesting and substantial

information than large communities.

Our analysis provides new properties of simple random walks on graphs. We show that for any
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set S ⊆ V a simple t step random walk started at a uniformly chosen vertex of S remains in S with

probability at least (1−φ(S))t (see Section 8.3 for more details). This has been also used to provide

improved lower bounds on the mixing time of reversible random walks. Our analysis builds on the

recent works of Andersen, Morris and Peres [MP03, AP09].

Universal Bounds on Laplacian Eigenvalues. In a joint work with Lyons [LO12], we use the

spectral embedding to provide a unifying framework for lower bounding all the eigenvalues of the

normalized Laplacian matrix of graphs. For example, we show that for any graph G with n vertices

λk ≤ 1 − Ω(k3/n3), this upper bound improves to 1 − Ω(k2/n2) if the graph is regular (note that

there is no dependency to the degree). We generalize these results and we provide sharp bounds on

the eigenvalues of various classes of graphs including vertex transitive graphs, and infinite graphs in

terms of specific graph parameters like the volume growth.

Using these bounds we design a slightly sub-exponential time algorithm that beats the O(
√

log n)

approximation algorithm of [ARV09] for the sparsest cut. Our work introduces the spectral embed-

ding as a new tool in analyzing the reversible Markov Chains. We have used our machinery to

provide (improved) upper bounds on the return probabilities and mixing time of random walks with

considerably shorter and more direct proofs. Furthermore, building on an earlier work of Lyons

[Lyo05a], we design fast local algorithms to approximate the number of spanning trees of massive

graphs.

Partitioning into Expanders There is a basic fact in algebraic graph theory that λk > 0 if and

only if G has at most k − 1 connected components. In a joint work with Trevisan [OT13] we prove

a robust version of this fact. If λk > 0, then for some 1 ≤ l ≤ k− 1, V can be partitioned into l sets

P1, . . . , Pl such that each Pi is a low-conductance set in G and induces a high conductance induced

subgraph. In particular, φ(Pi) . l3
√
λl and φ(G[Pi]) & λk/k

2.

We design a simple polynomial time spectral algorithm to find such partitioning of G with a

quadratic loss in the inside conductance of Pi’s. Unlike the traditional spectral clustering algorithms,

our algorithm does not use higher order eigenfunctions of G. Furthermore, if there is a sufficiently

large gap between λk and λk+1, more precisely, if λk+1 & poly(k)λ
1/4
k then our algorithm finds a

k partitioning of V into sets P1, . . . , Pk such that the induced subgraph G[Pi] has a significantly

larger conductance than the conductance of Pi in G. Such a partitioning may represent the best

k clusterings of G. Our algorithm is a simple local search that only uses the Spectral Partitioning

algorithm as a subroutine. We expect to see further applications of this simple algorithm in clustering

applications.

Part II of this thesis is organized as follows. In Chapter 7 we provide background on spectral

graph theory, Laplacian matrix, random walks, eigenfunction computation, conductance, Cheeger’s

inequality and random partitioning of metric spaces. Chapter 8 is specifically organized to provide
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new machineries developed in this part of the thesis that we expect to see in several applications in

the future. We describe our new machinery of spectral embedding and its properties in Section 8.1.

We prove our new dimension reduction framework in Section 8.2, and in Section 8.3 we prove

our improved upper bound on the escape probability of random walks. In Chapter 9 we prove

universal lower bounds on eigenvalues of the normalized Laplacian matrix. We prove our higher

order Cheeger’s inequality in Chapter 10, and our improved Cheeger’s inequality in Chapter 11.

Finally, we design our local graph clustering algorithm in Chapter 12 and our new graph clustering

algorithm in Chapter 13.

1.2.4 An Upper Bound on Graph Diameter based on Laplacian Eigenval-

ues

The goal of this section to provide a simple and inspiring proof of relating combinatorial properties

of graphs to algebraic properties of matrices. We relate the dimeter of a graph to eigenvalues of the

normalized Laplacian matrix. Our proof uses some of the new machineries on higher eigenvalues

that we will develop in this thesis. The result of this section is based on a joint work with Luca

Trevisan [GT12].

Let G = (V,E) be a connected, undirected and unweighted graph, and let d(v) be the degree of

vertex v in G. Let D be the diagonal matrix of vertex degrees and A be the adjacency matrix of G.

Let L := D−A be the Laplacian of G, and let L := I −D−1/2AD−1/2 be the normalized Laplacian

matrix of G where I is the identity matrix (see Section 7.2 for background and properties of the

Laplacian and the normalized Laplacian matrices). The matrix L is positive semi-definite. Let

0 = λ1 ≤ λ2 ≤ . . . ≤ λn ≤ 2

be the eigenvalues of L. For any pair of vertices u, v ∈ G, we define their distance, dist(u, v), to be

the length of the shortest path connecting u to v. The diameter of the graph G is the maximum

distance between all pairs of vertices, i.e.,

diam(G) := max
u,v

dist(u, v).

Alon and Milman [AM85] show that if ∆ is the maximum degree of vertices of G, and λ is the

second smallest eigenvalue of the Laplacian of G, then

diam(G) ≤ 2
√

2∆/λ log2 n. (1.2.2)
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Chung [Chu89] improved the above result for regular graphs and show that,

diam(G) ≤

⌈
log(n− 1)

log ∆
∆−λ

⌉

To the best of our knowledge, none of the above results are generalized to higher eigenvalues of

the (normalized) Laplacian matrix of G. The following question is asked by Gil Kalai in a personal

communication [Kal12]. Is it true that for any connected graph G, and any k ≥ 2, diam(G) =

O(k log(n)/λk). Equation (1.2.2) shows that this question already holds for k = 2. Therefore,

Kalai’s question can be seen as a generalization of the result of [AM85] to higher eigenvalues of L.

In this section we answer his question affirmatively and we prove the following theorem

Theorem 1.2.1. For any unweighted, connected graph G, and any k ≥ 2,

diam(G) ≤ 48k log n

λk
.

Observe that the above theorem relates a combinatorial property of G to an algebraic property of

the normalized Laplacian matrix. This is because the eigenvalues are the zeros of the characteristic

polynomial of the determinant of L − λI (see Section 7.1 for background).

Our proof uses the easy direction of our higher order Cheeger inequalities that we prove in

Chapter 10. For a set S ⊆ V , let E(S, S) := {{u, v} : |{u, v} ∩ S| = 1} be the set of edges with in

the cut (S, S). Let vol(S) :=
∑
v∈S d(v) be the volume of the set S, and let

φ(S) :=
|E(S, S)|

min{vol(S), vol(S)}

be the conductance of S. Let ρ(k) be the worst conductance of any k disjoint subsets of V , i.e.,

ρ(k) := min
disjoint S1,S2,...,Sk

max
1≤i≤k

φ(Si).

In Theorem 10.1.1 we will show that for any graph G and any k ≥ 2,

λk
2
≤ ρ(k) ≤ O(k2)

√
λk. (1.2.3)

We will use the left side of the above inequality, a.k.a. easy direction of higher order Cheeger

inequality, to prove Theorem 1.2.1.

Proof. We construct k disjoint sets S1, . . . , Sk such that for each 1 ≤ i ≤ k, φ(Si) ≤ O(k log n/ diam(G)),

and then we use (1.2.3) to prove the theorem.

First, we find k + 1 vertices v0, ..., vk such that the distance between each pair of the vertices is

at least diam(G)/2k. We can do that by taking the vertices v0 and vk to be at distance diam(G).
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Then, we consider a shortest path connecting v0 to vk and take equally spaced vertices on that path.

For a set S ⊆ V , and radius r ≥ 0 let

B(S, r) := {v : min
u∈S

dist(v, u) ≤ r}

be the set of vertices at distance at most r from the set S. If S = {v} is a single vertex, we abuse

notation and use B(v, r) to denote the ball of radius r around v. For each i = 0, . . . , k, consider the

ball of radius diam(G)/6k centered at vi, and note that all these balls are disjoint. Therefore, at most

one of them can have a volume of at least vol(V )/2. Remove that ball from consideration, if present.

So, maybe after renaming, we have k vertices v1, ..., vk such that the balls of radius diam(G)/6k

around them, B(v1,diam(G)/6k), . . . , B(vk,diam(G)/6k), are all disjoint and all contain at most a

mass of vol(V )/2.

The next claim shows that for any vertex vi there exists a radius ri < diam(G)/6k such that

φ(B(vi, ri)) ≤ 24k log n/ diam(G).

Claim 1.2.2. For any vertex v ∈ V and r > 0, if vol(B(v, r)) ≤ vol(V )/2, then for some 0 ≤ i < r,

φ(B(v, i)) = 4 log n/r.

Proof. First observe that for any set S ⊆ V , with vol(S) ≤ vol(V )/2,

vol(B(S, 1)) = vol(S) + vol(N(S)) ≥ vol(S) + |E(S, S)| = vol(S)(1 + φ(S)) (1.2.4)

where the inequality follows from the fact that each edge {u, v} ∈ E(S, S) has exactly one endpoint

in N(S), and the last equality follows from the fact that vol(S) ≤ vol(V )/2. Now, since B(v, r) ≤
vol(V )/2, by repeated application of (1.2.4) we get,

vol(B(v, r)) ≥ vol(B(v, r − 1))(1 + φ(B(v, r − 1))) ≥ . . . ≥
r−1∏
i=0

(1 + φ(B(v, i)))

≥ exp

(
1

2

r−1∑
i=0

φ(B(v, i))

)
.

where the last inequality uses the fact that φ(S) ≤ 1 for any set S ⊆ V . Since G is unweighted,

vol(B(v, r)) ≤ vol(V ) ≤ n2. Therefore, by taking logarithm from both sides of the above inequality

we get,
r−1∑
i=0

φ(B(v, i)) ≤ 2 log(vol(B(v, r))) ≤ 4 log n.

Therefore, there exists i < r such that φ(B(v, i)) ≤ 4 log n/r.

Now, for each 1 ≤ i ≤ k, let Si := B(vi, ri). Since ri < diam(G)/6k, S1, . . . , Sk are disjoint.

Furthermore, by the above claim φ(Si) ≤ 24k log n/ diam(G). Therefore, ρ(k) ≤ 24k log n/ diam(G).
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Finally, using (1.2.3), we get

λk ≤ 2ρ(k) ≤ 48k log n

diam(G).

This completes the proof of Theorem 1.2.1.
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Chapter 2

Background

Throughout this part we assume G = (V,E) with n := |V | vertices. Unless otherwise specified, we

allow G to have parallel edges, so we think of E as a multi-set of edges. We often assume that G is

an undirected graph and we use e = {u, v} to denote an edge of G. if G is directed we use a = (u, v)

to denote an arc of G. For any undirected graph H we use V (H) to denote the vertex set of H

and E(H) to denote the edge set of H. We use bold lower letters to refer to vectors. For a vector

x ∈ RE (resp. x ∈ RA), we use xe (resp. xa) to denote the value assigned to an edge e (or an arc

a) of G. For a given function f : A→ R, the cost of f is defined as follows:

c(f) :=
∑
e∈E

c(e)f(e).

For a set S ⊆ E, we define

f(S) :=
∑
e∈S

f(e).

We use the same notation for a function defined on the edge set A of an directed graph.

For a set S ⊆ V we use

E(S) := {{u, v} ∈ E : u, v ∈ S},

δ(S) := {{u, v} ∈ E : u ∈ S, v ∈ S}.

If S = {v} for a vertex v ∈ V , we may abuse the notation and use δ(v) instead. If G = (V,A) is

directed, we use

δ+(S) := {(u, v) ∈ A : u ∈ S, v ∈ S}, δ−(S) := {(u, v ∈ S : u ∈ S, v ∈ S}.

For disjoint S, T ⊆ V we use E(S, T ) := {{u, v} : u ∈ S, v ∈ T}.

24
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2.1 The Traveling Salesman Problem

In an instance of the traveling salesman problem (TSP) we are given a set of cities (V) with a non-

negative cost function c : V ×V → R+ that satisfies the triangle inequality, i.e., for any u, v, w ∈ V ,

c(u, v) ≤ c(u,w) + c(w, v).

The goal is to find the shortest tour that visits each vertex at least once. A sequence of vertices

v1, v2, . . . , vk is a tour when {v1, . . . , vk} = V . More precisely, our goal is to find a tour v1, . . . , vn

such that

c(v1, v2) + c(v2, v3) + . . .+ c(vn−1, vn) + c(vn, v1)

is as small as possible.

Often this problem is formulated such that each vertex must be visited exactly once. It is easy

two see that the two definitions are indeed equivalent. If we find a tour that visits each vertex at

least once, then we can shortcut the tour and avoid visiting a vertex more than once. By triangle

inequality the cost of the new tour can only be smaller than the original one.

TSP is proved to be NP-complete since the Hamiltonian Circuit problem is NP-complete. If we

do not assume c(., .) satisfies the triangle inequality and we are asked to find a tour that visits each

vertex exactly once, then the problem does not admit any approximation algorithm because of a

simple reduction to the Hamiltonian circuit problem [SG76].

Next we describe several important variants of TSP all of them known to be NP-hard, and we

recall the best known approximation algorithms for each of them prior to our works.

Symmetric TSP. Symmetric TSP (STSP) is the most well-known variant of TSP where we assume

that the cost function is symmetric, i.e., for all u, v ∈ V , c(u, v) = c(v, u). After a long line of

work [Eng99, BS00, PV06, Lam12] the best known lower bound for approximating TSP is by

Lampis [Lam12] who show that it is NP-hard to approximate TSP with a factor better than
185
184 . The best known approximation algorithm for TSP has an approximation factor of 3/2

and is due to Christofides [Chr76]. It is conjectured that there is a 4
3 approximation algorithm

for TSP but this conjecture is proved only in very special cases [AGG11, BSvdSS11, MS11].

Although many researchers tried to improve the 3/2 factor during the last 30 years, no-one

is ever succeeded. It remains a central open problem in the field of computing to design an

approximation algorithm for TSP that beats the Christofides’ 3/2 approximation factor.

Asymmetric TSP. Asymmetric TSP (ATSP) is the most general variant of TSP where any cost

function that is not necessarily symmetric but satisfies the triangle inequality is allowed. The

first approximation algorithm for ATSP is due to Frieze, Galbiati and Maffioli [FGM82] who

obtained a log(n) approximation algorithm. Although many researchers tried, after a long line

of work [Blä02, KLSS05, FS07] the approximation factor is only improved to 0.66 log(n) and it
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remained an important open problem to break the Θ(log(n)) barrier. On the hardness side, the

best known inapproximability result is 117
116 due to Papadimitriou and Vempala [BS00, PV06].

Euclidean TSP. Euclidean TSP is a special case where it is assumed that the vertices are mapped

to a plane and the cost function is simply the Euclidean distance between the vertices. Pa-

padimitriou proved that even Euclidean TSP is an NP-complete problem [Pap77]. Unlike the

general version of TSP, there is no inapproximability result for Euclidean TSP. Indeed, Arora

[Aro96] and Mitchell [Mit99] independently designed a polynomial time approximation scheme

(PTAS) for Eulidean TSP. We recall that a PTAS is an algorithm that for any given ε > 0 in

a polynomial time in |V | finds a solution that is within (1 + ε) factor of the optimum.

Graphic TSP. Graphic TSP is a natural special case of TSP where we are given an underlying

connected graph G0 = (V,E0), and for all u, v ∈ V , c(u, v) is the length of the shortest path

that connects u to v. Equivalently, we can reformulate graphic TSP as follows: we are given

an unweighted graph, and we want to find an Eulerian connected subgraph with the minimum

number of edges. We recall that a graph is Eulerian if every vertex has an even degree.

Similarly, one can also define graphic ATSP problem where G0 is directed graph and c(u, v) is

the length of the shortest directed path from u to v.

Observe that if G0 is a allowed to be weighted then we would recover the general version of

symmetric TSP. This is because for a given instance of symmetric TSP one can construct a

complete graph G0 where the weight of each edge {u, v} is c(u, v).

The importance of graphic TSP is that all of the known hard instances of TSP are essentially

instances of graphic TSP (e.g., in the Lampis [Lam12] construction, although the graph G0 is

weighted, the weight of the edges are between 1 and 2). So, it seems graphic TSP capture the

main difficulty of the problem. Also, similar to TSP, graphic TSP is APX-hard, meaning that

under the P 6= NP conjecture there is no PTAS for graphic TSP. Prior to our work the best

known approximation algorithm for graphic TSP is also the 3/2 approximation algorithm of

Christofides [Chr76].

Planar TSP. Planar TSP is a special case of TSP where the cost function is the shortest path

completion metric of a weighted planar graph. In other words, we are given a weighted planar

graph G0 = (V,E0) and for all pair of vertices u, v ∈ V , c(u, v) is the weight of the shortest path

from u to v in G0. Polynomial time approximation schemes have been found for planar TSP

[GKP95, AGK+98, Kle05], and bounded genus TSP [DHM07]. Similarly, Planar ATSP is a

special case of ATSP where the cost function is the shortest path metric of a weighted directed

planar graph. Prior to our works nothing better than O(log(n)) approximation algorithm was

known for Planar ATSP.
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2.2 Linear and Convex Programming

In this short section we overview useful properties of Linear and Convex programs. We refer the

interested readers to [GLS93, BV06] for more information.

A polytope is an intersection of a number of half-planes. A polytope is bounded if there is a ball

of finite radius that contains it. A polytope is finite if it is an intersection of a finite number of

half-planes.

An extreme point solution of a linear program, or a vertex of a polytope is a feasible point x

such that x cannot be written as a linear combination of two other points of the program.

Theorem 2.2.1 (Carathéodory’s theorem). Any feasible point x of a linear program over Rn can

be written as a convex combination of at most n+ 1 extreme point solutions.

Algorithmic versions of the above theorem can be found in [GLS93, Thm 6.5.11], that is there is

a polynomial time algorithm that, for any given feasible solution x, writes x as a convex combination

of at most n+ 1 extreme point solutions.

Consider the following generic convex program over points x ∈ Rn.

minimize f0(x)

subject to fi(x) ≤ 0 ∀1 ≤ i ≤ m

Ax = b

where f0, . . . , fm are convex functions, A ∈ Rm′×n. We say a feasible solution x is in the relative

interior of the above program if for all 1 ≤ i ≤ m, fi(x) < 0. We say a convex program satisfies the

Slater’s condition if there is a feasible solution in the relative interior of the program. If a convex

program satisfies the Slater’s condition then it satisfies the strong duality, i.e., the primal optimum

is equal to the Lagrangian dual (see [BV06, Section 5.2.3] for more information).

Next, we show that if x is a vector in the relative interior of a finite bounded polytope P , then

x can be written as a convex combination of all vertices of P such that each vertex has a positive

coefficient. Let y be the summation of all vertices of P . Since P is finite and bounded y is well

defined. Since x is in the relative interior of P , for a sufficiently small ε > 0, x′ = x− εy ∈ P . Now

we can write x′ =
∑k
i=1 αixi as a convex combination of vertices of P , then write x = εy+

∑k
i=1 αixi

as a convex combination of all vertices of P .

Many of the linear or convex programs that we study in this thesis have an exponential or even

infinite number of constraints. To efficiently find a feasible or an extreme point solution of these

programs we need to provide a separating hyperplane oracle and use the ellipsoid algorithm. Let

P ⊂ Rn be an arbitrary bounded polytope. Let R > 0 such that for a point y0 ∈ Rn,

P ⊆ {y : ‖y − y0‖ ≤ R}.
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Also, let r > 0 such that for a point x0 ∈ P , {x ∈ P : ‖x− x0‖ ≤ r} ⊆ P . A separating hyperplane

oracle is a deterministic algorithm that for any given point y ∈ Rn either decides y ∈ P , or finds a

vector a ∈ Rn such that for all x ∈ P ,

〈a,y〉 < 〈a,x〉.

The following theorem follows from Khachiyan’s ellipsoid algorithm.

Theorem 2.2.2. If the separating hyperplane oracle runs in in time polynomial in n and log(R/r),

then the ellipsoid algorithm finds a feasible solution of P in time polynomial in n and log(R/r).

Note that the running time is independent of the number of constraints, or the number of faces

of P .

2.3 Matroids and Spanning trees

For a ground set of elements E and ∅ 6= I ⊆ 2E , M = (E, I) is called a matroid if

1. For any A ∈ I and B ⊆ A we have B ∈ I. In other words, I is a downward closed family of

subsets of E.

2. For any A,B ∈ I such that |A| < |B| there exists an element e ∈ B−A such that A∪{e} ∈ I.

This property is called the extension property of matroids.

A well-known example of matroids is the graphical matroid defined on a graph G where E is the

set of edges of G, and I is the subsets of E that does not include a cycle.

The rank function of a matroid M assigns to every S ⊆ E a number

rank(S) := max{|A| : A ∈ I, A ⊆ S}.

IfM is a graphic matroid of a graphG = (V,E) then for any S ⊆ E, rank(S) = |V |−# components(S).

In other words, rank(S) is the number of edges in the maximum spanning forest of S.

A set A ∈ I is called a base of a matroid M if S has the largest number of elements among

all sets in I, i.e., |A| = max{|B| : B ∈ I}. For example, if G is a connected graph, and M is the

graphic matroid on G, then the bases of M are exactly the spanning trees of G.

The following lemma will be useful later.

Lemma 2.3.1. Suppose we have assigned weights w : E → R such that w(e1) ≤ . . . ≤ w(em).

If w(ek) > w(ek+1) for some 1 ≤ k < m, then any maximum weight base of M has exactly

rank{e1 . . . , ek} elements from {e1, . . . , ek}.
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Proof. Let S = {e1, . . . , ek}. Let B be a maximum weight base of M such that |B ∩ S| < rank(S).

Let A = B ∩ S. Since A ∈ I, by the extension property, there is an element e ∈ S such that

A ∪ {e} ∈ I (note that e /∈ B). Now, again by the extension property we can extend A ∪ {e} by

adding elements from B and obtain a base B′. By construction, {e} = B′−B, and for some e′ ∈ E,

{e′} = B − B′ . Since B ∩ S ⊆ B′ ∩ S, we must have e′ /∈ S. Therefore, by the definition of S,

we > we′ , and we get w(B′) > w(B) which is a contradiction.

2.4 Linear Programming Relaxation

As we elaborated in Section 1.1 our approach for solving the Traveling salesman problem is by

rounding an optimal solution to the linear programming (LP) relaxation of the problem. In this

section we overview this relaxation and several other LP relaxation of related problems.

The following linear program first formulated by Dantzig, Fulkerson and Johnson [DFJ54] is

known as subtour elimination polytope or Held-Karp LP relaxation (see also [HK70]).

minimize
∑
{u,v}

c(u, v)x{u,v}

subject to
∑

u∈S,v∈S

x{u,v} ≥ 2 ∀S ( V

∑
v∈V

x{u,v} = 2 ∀u ∈ V

x{u,v} ≥ 0 ∀u, v ∈ V.

(2.4.1)

Observe that an optimal integral tour that visits each vertex exactly once (i.e., a Hamiltonian circuit)

is a feasible solution to the above LP. In particular, each vertex is adjacent to exactly two edges

of the tour and each cut separates the endpoints of at least two edges of the tour. Therefore, the

solution of above LP provides a lower bound on the cost of the optimum tour.

We use G = (V,E,x) to denote the fractional support graph corresponding to a feasible solution

x, i.e., E = {e : xe > 0}. For an edge e ∈ E we use xe to denote the fraction of e in G. In this sense,

the degree of a vertex in G is the sum of the fractions of edges incident to that vertex. Therefore,

G is fractionally 2-regular and 2-edge connected. We use c(x(E′)) =
∑
e∈E′ c(e) · xe. In particular,

we use c(x) := c(x(E)).
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Next we describe the LP relaxation of asymmetric TSP.

minimize
∑
u,v∈V

c(u, v)x(u,v)

subject to
∑

u∈S,v∈S

x(u,v) ≥ 1 ∀S ( V

∑
v∈V

x(u,v) =
∑
v∈V

x(v,u) = 1 ∀u ∈ V

x(u,v) ≥ 0 ∀u, v ∈ V.

(2.4.2)

Note that in (2.4.1) we have a variable x{u,v} for each un-ordered pair of vertices, but in the above

program we have x(u,v) for each ordered pair. Again a directed Hamiltonian circuit is a feasible

solution to the above program, so the program provides a lower bound on the cost of the optimum

tour of ATSP. Similarly, we can define G = (V,A,x) as the support graph, where in this case G is

a directed graph.

Both of LP (2.4.1) and (2.4.2) have an exponential number of constraints. An optimum solution

can be computed in polynomial-time either by the ellipsoid algorithm or by reformulating the above

programs as LPs with polynomially-bounded size. Note that in both cases a separating hyperplane

oracle needs to find a global minimum cut in the fractional graph G = (V,E,x) or G = (V,A,x).

The global minimum cut can be found by an almost linear time algorithm of Karger [Kar00].

2.4.1 Integrality Gap

Since STSP and ATSP are NP-complete we do not expect that the optimum solution of (2.4.1)

and (2.4.2) provide an exact estimate of the cost of the optimum tour. (as it turns out in many of

the practical applications the value of these LP are very close to the integral optimum [ABCC07]).

Consequently, an optimum solution x is a fractional vector.

The integrality gap of a family of LP is the supremum of the ratio of the cost of the optimum

integral solution to the cost of the optimum fractional solution of LP. Next, we describe a folklore

example that shows the integrality gap of (2.4.1) is at least 4/3. Consider an infinite family of graphs

illustrated in Figure 2.4.1 where each is an instance of Graphic TSP. It is easy to see that the cost

of the optimum integral tour is at least 4n/3− 2 and the cost of the optimum fractional solution is

exactly n (the latter is because the cost of each edge is exactly 1). Therefore,

Integrality Gap (2.4.1) ≥ lim
n→∞

4n/3− 2

n
=

4

3
.

Wolsey [Wol80] proved a new analysis of Christofides’ 3/2 approximation algorithm [Chr76] and

he show that the integrality gap of (2.4.1) is at most 3/2. It is conjectured that the true value of

the integrality gap is 4/3 but this remained open for several decades. Schalekamp, Williamson and
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Figure 2.4.1: An illustration of the integrality gap example of LP (2.4.1). Each long path contains
exactly n/3 vertices. For each edge e = {u, v}, c(u, v) = 1, and the c(u, v) is the length of the
shortest path connecting u to v for the remaining pair of vertices. Here, in an optimal solution of
(2.4.1), xe = 1 for solid edges and xe = 1/2 for dashed edges.

van Zuylen [SWvZ12] conjectured the worst-case ratio of (2.4.1) occurs for half-integral fractional

solution, i.e., vectors x where xe is 1/2 or 1 for all of the edges in the support of x, but still we don’t

know the worst case integrality gap of even half-integral solutions. In efforts of better understanding

the Held-Karp relaxation, extreme point solutions of this linear program are intensely studied in the

literature [BP91, CV00, Goe06].

Integrality gap of (2.4.2) is also studied. Prior to our works, the best upper bound is O(log(n))

by the analysis of Frieze et al. [FGM82]. But, the best lower bound is only 2 by a recent work

of Charikar, Goemans and Karloff [CGK06]. Note that compared to TSP, we have a significantly

larger gap between the upper bound and lower bound. It is conjectured that the integrality gap is

a constant. As we describe in Chapter 5 under Conjecture 5.3.2 the integrality gap of (2.4.2) is a

constant.

2.4.2 Integral Polytopes

One can also write an LP relaxation for problems in P . These LPs are typically integral (i.e., their

integrality gap is 1). In other words, any non-integral feasible solution can be written as a convex

combination of two other feasible solutions, so any extreme point solution is an integral vector.

We start by describing the spanning tree polytope. For G = (V,E), Edmonds [Edm70] gave the

following LP relaxation of spanning trees of G.

z(E) = n− 1

z(E(S)) ≤ |S| − 1 ∀S ⊆ V

ze ≥ 0 ∀e ∈ E.

(2.4.3)

Edmonds [Edm70] proved that above linear program is exactly the convex-hull of all spanning trees

of graph G, i.e., extreme point solutions of above linear program are exactly the spanning trees of

G. Therefore, above program is known as the spanning tree polytope.
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Figure 2.4.2: Consider the wheel graph shown at left. The right diagram shows an O-join, the red
vertices are the vertices of O and the edges of the O-join are shown in blue.

We made the following simple observation in [AGM+10]

Fact 2.4.1. For any feasible solution x of (2.4.1), z = (1−1/n)x is a feasible solution in the relative

interior of (2.4.3)

Proof. First, observe that

z(E) = (1− 1/n)x(E) =
1− 1/n

2

∑
v∈V

x(δ(v)) = n− 1.

On the other hand, for any S ⊆ V ,

z(E(S)) = (1− 1/n)x(E(S)) =
1− 1/n

2

(∑
v∈S

x(δ(v))− x(δ(S))
)

=
1− 1/n

2
(2|S| − 2)

< |S| − 1.

So, z is in the relative interior of (2.4.3).

For a graph G = (V,E) and a set O ⊆ V with even number of vertices, an O-join is a multiset

F of edges of E such that in the subgraph (V, F ) every vertex of O has an odd degree and every

vertex of V − O has an even degree. Note that F can have multiple copies of an edge in E (see

Figure 2.4.2 for an example). We remark that conventionally the term T -join is used, here we would

rather reserve the notation T for spanning trees.

Edmonds and Johnson [EJ73] proved the following characterization of the O-join polytope.

Proposition 2.4.2. For any graph G = (V,E) and cost function c : E → R+, and O ⊆ V with

even number of vertices, the minimum weight of an O-join equals the optimum value of the following

linear program.

minimize c(y)

subject to y(δ(S)) ≥ 1 ∀S ⊆ V, |S ∩O| odd

ye ≥ 0 ∀e ∈ E

(2.4.4)
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Figure 2.5.3: The left graph shows an instance of Graphic TSP. For each pair of vertices u, v ∈ V ,
c(u, v) is the length of the shortest path from u to v. In the right graph we show a possible output of
Algorithm 4. The green edges are the edges of a minimum spanning tree, and the blue dashed edges
are the edges of a minimum cost perfect matching on the odd degree vertices of the tree. Observe
that the cost of the computed solution is 23 while the optimum 16. If we increase the number of
vertices to infinity, then the approximation factor approach 3/2

Note that (2.4.4) is the up-hull of all O-joins of G. We recall that the up-hull of a polytope is

the set of points that are at least as large as some point in the polytope.

2.5 The Christofides’ Algorithm

In this section we describe Christofides’ 3/2 approximation algorithms for symmetric TSP. This

algorithm is one of the first approximation algorithms designed in the field of computing. Because

of the simplicity and elegance of this algorithm, it is taught in many of the introduction to algorithm

courses.

The details of the algorithm is described in Algorithm 4. In Figure 2.5.3 we illustrated an output

of this algorithm in an instance of Graphic TSP.

Algorithm 4 Christofides’ 3/2 approximation algorithm for TSP

Compute a minimum cost spanning tree of the complete graph where cost of each edge {u, v} is
c(u, v).
Compute a minimum cost perfect matching on the odd degree vertices of the spanning tree.
Return the union of the tree and the matching.

Observe that the union of a spanning tree and the matching is a feasible TSP tour, because it

is connected and Eulerian. It is also easy to see that the cost of the solution is at most 3/2 of the

optimum. First, observe that the cost of the spanning tree is always at most the cost of the optimum

tour, because by removing an edge of any Hamiltonian circuit we obtain a spanning tree. On the

other hand, we show for any S ⊆ V , where |S| is even, the cost of the minimum matching on the

vertices of S is at most half of the optimum. First observe that by the triangle inequality we can
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A B

Figure 2.6.4: An example of two crossing sets.

shortcut the vertices in V −S and obtain a tour of cost at most the optimum that visits each vertex

of S exactly once. This tour defines two disjoint perfect matching on S one of which have cost at

most half of the optimum tour.

Figure 2.5.3 shows that the above analysis is tight and the cost of the solution of the Christofides’

algorithm may be 3/2 of the optimum solution even in instances of Graphic TSP. The above analysis

shows that the cost of the tour obtained in Algorithm 4 is at most 3/2 of the optimum integral tour,

but it does not bound the integrality gap of LP (2.4.1). Next, we describe an argument of Wolsey

[Wol80] that shows the cost of tour in the output is at most 3/2 of the optimum value of LP (2.4.1).

Let x be an optimum solution of (2.4.1). Let z = (1−1/n)x. Then, by Fact 2.4.1, z is inside the

LP (2.4.3). So, the cost of the minimum spanning tree is at least c(z) ≤ c(x). It remains to upper

bound the cost of the matching by c(x)/2. Let y = x/2. By (2.4.1) for each cut (S, S), y(δ(S)) ≥ 1.

So y is inside the LP (2.4.4), for any set O ⊆ V , and in particular, for the set O being the odd

degree vertices of the chosen minimum spanning tree. By Proposition 2.4.2 the cost of the minimum

O-join on G is at most c(y) = c(x)/2, So, by the triangle inequality the cost of the minimum cost

perfect matching is at most c(x)/2.

2.6 Structure of Minimum Cuts

In this section we overview the structure of minimum cuts of any ∆-edge connected undirected graph

G. All of the statements hold for fractional graphs as well but for simplicity of notation we assume

G is integral, but we allow G to have parallel edges. Before describing the structure of minimum

cuts we discuss general properties of any family of cuts in G.

Two subsets A,B ⊆ V are crossing if A ∩ B,A − B,B − A,A ∪B are all non-empty (see Fig-

ure 2.6.4). Two cuts (A,A) and (B,B) are crossing if A,B are crossing. A cut (A,A) is a trivial

cut if |A| = 1 or |A| = 1.

Definition 2.6.1 (Atom). For a collection F of cuts, the atoms of F are the members of a partition

P of the vertex set V such that

• no cut of F divides any of the atoms of F , and

• P is the coarsest partition with this property.
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We say an atom is singleton if it is a set of a single vertex of V .

See Figure 2.6.5 for example of atoms of a family of cuts. We say a cut class is trivial if it has

two atoms and one of them is a singleton.

Definition 2.6.2 (Cross Graph). For a collection F of cuts of a graph G, cross graph G is a graph

on vertex set F that has an edge between two cuts in F if they cross. Each connected component of

G is called a cut class, we use C to denote a single cut class.

For example, if F is the set of three cuts that are shown by dashed lines in Figure 2.6.5, then G
has just one connected component.

For a cut class C we use ψ(C) to denote the set of atoms of C. We say a cut (A,A) is non-proper,

if it separates an atom of its cut class from the rest of the atoms, and it is proper otherwise. Observe

that a cut class C has a non-proper cut if and only if it has exactly one cut, or equivalently two

atoms. This is because no cut crosses a non-proper cut. Since a cut class with 3 atoms can only

have non-proper cuts, and no two non-proper cuts cross, we cannot have any cut class with 3 atoms.

In the rest of this section we prove several properties of cut classes and their atoms. Our first

lemma relates atoms in different cut classes. The proof is based on [Ben97, Lemma 4.1.7].

Lemma 2.6.3 ([Ben97, Lemma 4.1.7]). For any two distinct cut classes C1, C2 of a collection of

cuts F , there are unique atoms A∗ ∈ ψ(C1) and B∗ ∈ ψ(C2) such that A∗ ∪B∗ = V . So,

i) For any B ∈ ψ(C2) such that B 6= B∗, we have B ⊆ A∗.

ii) For any A ∈ ψ(C1) such that A 6= A∗, we have A ⊆ B∗.

iii) For any A ∈ ψ(C1), B ∈ ψ(C2), A does not cross B.

iv) If there are A ∈ ψ(C1), B ∈ ψ(C2) such that A = B, then exactly one of C1, C2 is non-proper.

So, we cannot have three atoms A1, A2, A3 in three distinct cut classes such that A1 = A2 = A3.

Proof. Consider a cut (C,C) ∈ C1, and form two subsets of the cuts (D,D) ∈ C2 depending on

whether D or D ⊆ C, or D or D ⊆ C. Since no cut of C2 crosses a cut of C1, all cuts of C2 are put

into one of these two sets. Furthermore, since no cut from one of the subsets of above type may

cross a cut from the other set and since the cuts in C2 form a connected component, one of the two

sets must be empty. So, (perhaps after renaming) assume that for all (D,D) ∈ C2, we have D ⊆ C.

The above argument holds for any (C,C) ∈ C1. So,

⋃
(D,D)∈C2

D ⊆
⋂

(C,C)∈C1

C.

But by the definitions of atoms the LHS is the complement of an atom B∗ in ψ(C2), and the RHS

is an atom A∗ in ψ(C1). These two atoms satisfy the lemma’s conclusion. We prove the uniqueness

below.
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Conclusions (i), (ii) simply follow from the fact that the atoms of any cut class form a partition

of the vertex set V . Conclusion (iii) follows from (i) and (ii).

Now, let us prove (iv). Since A = B we must either have B 6= B∗ or A 6= A∗. Without loss of

generality assume B 6= B∗. Since by (i) B ⊆ A∗, A = A∗. So, B = A∗ and by (i) C2 must have

exactly two atoms.

Finally, let us prove the uniqueness of A∗, B∗. Suppose there are another pair of atoms A ∈ ψ(C1)

and B ∈ ψ(C2) such that A ∪B = V and A 6= A∗. Since A ⊆ B∗, we must also have B 6= B∗. Since

by (ii) C1 6= C2, at least one of C1, C2, say C1 is non-proper and has an atom A′ 6= A,A∗. But then

by (ii) A′ ⊆ B∗ and A′ ⊆ B which is a contradiction.

In the following lemma we upper bound the number of atoms of any family of cut classes.

Corollary 2.6.4. For any k cut classes C1, . . . , Ck of any collection F of cuts, we can find a family

P of atoms such that atoms in P are pairwise disjoint and

|P | ≥ −2(k − 1) +

k∑
i=1

|ψ(Ci)|.

Proof. Without loss of generality, we assume |ψ(Ci)| > 2 for all 1 ≤ i ≤ k. So, by Lemma 2.6.3 for

any i 6= j and any A ∈ ψ(Ci), B ∈ ψ(Cj) we must have A 6= B. Also, let l =
∑k
i=1 |ψ(Ci)|.

By Lemma 2.6.3 for any i ≥ 2 there is an atom B∗i ∈ ψ(Ci) that is a complement of an atom

A∗i ∈ ψ(C1). Note that A∗i and A∗j are not necessarily different atoms of C1. Let

Q = ψ(C1) ∪ (ψ(C2)−B∗2) ∪ . . . ∪ (ψ(Ck)−B∗k).

By part (i) of Lemma 2.6.3 for any i ≥ 2, and any B ∈ ψ(Ci) ∩ Q, B ⊆ A∗i . So, by part (iii) of

Lemma 2.6.3 for any A,B ∈ Q, we have A ∩ B 6= ∅ if and only if A ⊂ B or B ⊂ A. Furthermore,

for any atom A ∈ Q that is a superset of an atom B ∈ ψ(Ci) ∩Q, A is also a superset of any other

atoms in ψ(Ci) ∩Q. To obtain a set of pairwise disjoint atoms we only need to remove supersets of

any atom of Q. But, we have to do this removal carefully such that we can count the number of

remaining atoms.

By above argument, for any cut class Ci (i ≥ 2) there is a chain of atoms Ai,1 ⊂ Ai,2 ⊂ Ai,3 . . . ⊂
A∗i such that they are supersets of all atoms of ψ(Ci)∩Q, and these are the only supersets of atoms

of ψ(Ci) ∩Q. Now, we define

P = Q−A2,1 −A3,1 − . . .−Ak,1.

First, observe that

|P | ≥ |Q| − (k − 1) = −2(k − 1) +

k∑
i=1

|ψ(Ci)|
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Figure 2.6.5: Left graph shows a connected family of three crossing cuts. This particular family has
6 atoms that are represented by 6 circles. In the right graph we identify the set of the vertices in
each of the 6 atoms and we remove the loops.

On the other hand, for any i ≥ 2, any atom Ai,j in the chain Ai1 , Ai,2, . . . is removed by Ai,j−1.

Therefore, for any A,B in P we must have A 6⊂ B and B 6⊂ A. Since P ⊆ Q atoms of P are pairwise

disjoint.

2.6.1 Properties of Minimum Cuts

Next, we discuss specific properties of structure of minimum cuts. For A ⊆ V , (A,A) is a minimum

cut of G, if |δ(A)| = ∆. It turns out that if (A,A) and (B,B) are crossing minimum cuts, then the

cuts defined by any of the four sets A ∩B,A−B,B −A,A ∪B are also minimum cuts.

Lemma 2.6.5. For any two crossing minimum cuts (A,A), (B,B),

|δ(A ∩B)|, |δ(A−B)|, |δ(B −A)|, |δ(A ∪B)| = ∆

Proof. Observe that,

2∆ ≤ |δ(A ∩B)|+ |δ(A ∪B)| ≤ |δ(A)|+ |δ(B)| = 2∆.

So, |δ(A ∩B)| = |δ(A ∪B)| = ∆. The other cases can be proved similarly.

For a partitioning P = {A1, A2, . . . , Ak} of vertices in G, let G(P ) be the graph obtained by

identifying the vertex set of each part Ai, and removing the self-loops afterwards. In particular, for

a cut class C, each vertex of G(ψ(C)) is an atom of C (see Figure 2.6.5 for an example).

The following lemma characterizes the structure of minimum cuts in a single cut class. The

lemma follows from the work of Dinits, Karzanov and Lomonosov [DKL76] (the proof below is

based on a technical report by Fleiner and Frank [FF09]).

Lemma 2.6.6 ([DKL76]). Let C denote a cut class of minimum cuts of G. Then G(ψ(C)) is a cycle

where between each adjacent pair of vertices there are ∆/2 parallel edges, and every pair of edges of

the cycle corresponds to a minimum cut of G.
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Proof. The proof essentially follows by repeated applications of Lemma 2.6.5. Let H = G(ψ(C))
(note that H is also ∆-edge connected). We say A ⊆ V (H) is tight if |δ(V (A))| = ∆. We say a

tight set A is non-trivial if |A| ≥ 2. The next fact follows from the fact that the atoms of C are the

coarsest partition with respect to cuts in C.

Fact 2.6.7. Any non-trivial set A is crossed by a tight set.

First, we show that the degree of each vertex of H is exactly ∆. For v ∈ V (H), let A be the

smallest tight set containing v. If |A| > 1, there must be a tight set B crossing A such that v ∈ B.

But then A∩B is a smaller set containing v, and by Lemma 2.6.5 it is a tight set. So, we must have

|A| = 1, and we get |δ(v)| = ∆.

Since each vertex has a degree of ∆, all we need to show is that each vertex u ∈ V (H) is contained

in at least two tight sets {u, v} and {u,w} for v 6= w. In the next claim we show that every vertex

is contained in at least one tight set of size 2.

Claim 2.6.8. Let A be a non-trivial tight set containing u. Then, A includes a two element tight

set containing u.

Proof. We prove by induction. If |A| = 2 we are already done. So assume |A| ≥ 3. Let B be a tight

set containing u that crosses A. If |A ∩B| ≥ 2, then we are done by induction. If |A ∩B| = 1, then

since A − B is a non-trivial set there is also a non-trivial tight set B′ that contains u and crosses

A−B. Now, either B′ ⊂ A, or B′ crosses A. In either case B′, or B′ ∩A gives a smaller non-trivial

tight set containing u, and we are done by induction.

It remains to show that a vertex u is contained in two tight sets of size 2. By the above claim

let {u, v} be a tight set. Then, there is a non-trivial tight set, A containing u that crosses {u, v}.
So v /∈ A. By above lemma A includes a two element tight set, {u,w}. Since v /∈ A, v 6= w.

The above lemma nicely characterizes any proper cut class of minimum cuts: we can place the

atoms around a cycle such that each two non-consecutive edges of the cycle is a minimum cut in that

cut class. Consequently, if C is a proper cut class of minimum cuts with k atoms, then it contains

exactly k(k − 3)/2 minimum cuts.

2.6.2 The Cactus Representation

Next, we discuss the representation of different cut classes of minimum cuts as represented by a

cactus graph [DKL76] and then the representation of different cut classes of an arbitrary collection

of cuts in a tree hierarchy [Ben95].

Definition 2.6.9 (Cactus Graph). A cactus graph is a graph with no cut edges in which no two

simple cycles share an edge.
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Figure 2.6.6: The cactus representation of a star graph

Observe that one can assign a tree to any cactus K; the vertices of the tree are the cycles of K

and there is an edge between two vertices if corresponding cycles share a vertex. Also, the minimum

cut of any cactus is exactly 2.

The cactus representation of G consists of a partition P of vertices of G and a cactus graph K

whose vertices may have either an element of P or the empty set, each element of P appearing exactly

once. Each minimum cut of G corresponds to a minimum cut of the cactus and each minimum cut

of the cactus correspond to a minimum cut of G. There are many ways to construct a cactus

representation of the minimum cuts of G. The following construction is based on [Ben97, BG08].

Lemma 2.6.10 ([BG08, Prop 24]). Let F be the collection of minimum cuts of an unweighted ∆-

edge connected graph G. For each cut class C, let Pi be the partition of V corresponding to ψ(C).

Then there exists a cactus K = (N,E′) and a mapping f : V → N such that

1. K has no cycle of length 3,

2. there is a 1-to-1 correspondence between the connected components C of the cross graph and

the cycles Ci of K,

3. the removal of the edges of Ci = u1−u2 . . .−ul−u1 break K into k (depending on i) connected

components, A1, . . . , Al ⊂ N where uj ∈ Aj such that Pi = {f−1(Aj) : 1 ≤ j ≤ l},

4. for each cut (B,B) ∈ F ,there is a unique cycle Ci in K and two edges of Ci which are non-

consecutive if the cycle is not of length 2, whose removal partitions N into U and N −U where

B = f−1(U).

Proof. The proof is a simple application of Lemma 2.6.3 and Lemma 2.6.6. First, if all of the

minimum cuts of G are degree cuts, then the cactus is simply a star with two parallel edges between

the center and any any other vertex. Each vertex of degree ∆ in G is mapped to a distinguished

leaf and all other vertices are mapped to the center (see Figure 2.6.6).

Otherwise, there is a cut class, C with a non-degree cut. Let A1, . . . , Al be the atoms of ψ(C) in

the order of vertices in the cycle graph G(ψ(C)). For each atom Ai, Let Gi be the graph obtained
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Figure 2.6.7: The left graph is a 4-edge connected graph. The middle graph shows the cactus
representation of the minimum cuts of the left graph. Observe that each vertex is mapped to
exactly one vertex of the cactus, and 4 vertices of the cactus are empty. Also, each minimum cut
of the cactus, i.e., each cut of of size 2, corresponds to a minimum cut of the left graph. The right
graph shows the tree hierarchy of the minimum cuts of the left graph. We used 1, 2 to denote the
set {3, 4, . . . , 8}, similarly, 1 = {1} Observe that each vertex of left graph is mapped to one vertex
of each cycle of the cactus. Three atoms of three different cut classes are mapped to each vertex of
the middle cycle.

by identifying the vertices in Ai. Find a cactus representation Ki of Gi recursively. We also assume

that K1, . . . ,Kl have disjoint vertex sets. Now, we are ready to construct K. First, we add a cycle,

C, of length |ψ(C)|. Then, we identify the i-th vertex of the cycle with a vertex of K(Gi) where Ai

is mapped. This vertex will be an empty vertex. So, the vertices of Ai are only mapped to the Ki

subgraph of K. This completes the construction

Conclusion 1 holds since no cut-class has 3 atoms. By Lemma 2.6.3 for every other cut class

C′ 6= C, there is an atom Ai of C such that all but one of the atoms of C′ are subsets of Ai. So,

the cuts in C′ are mapped to the subgraph Ki of K. So contracting the vertices of atoms in the

recursive construction preserve all of the cuts in F−C. Conclusions 2 and 3 hold by the construction.

Conclusion 4 holds by Lemma 2.6.6.

See Figure 2.6.7 for an example of the cactus representation.

Benczur, in his thesis [Ben97], studied representations of any collection of cuts. He slightly

changed the cactus representation and extended the above construction to any collection of cuts

[Ben97, Theorem 4.1.6]. The following representation is called tree hierarchy.

Theorem 2.6.11 ([Ben97]). Let F be a collection of cuts of G, and let Pi be the partition of V

corresponding to ψ(C). There exists a cactus K = (N,E′) such that
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1. K has no cycle of length 3.

2. there is a 1-to-1 correspondence between the cut classes of F and the cycles of K such that the

atoms of each cut class C are mapped to the vertices of a unique cycle Ci,

3. all pairs of atoms A ∈ ψ(C) and B ∈ ψ(C′) with C 6= C′ that are mapped to a coinciding vertex

of the cactus satisfy A ∪B = V .

See Figure 2.6.7 for an example of the tree hierarchy. Observe that the only difference with the

construction of cactus representation in the proof of Lemma 2.6.10 is that here the vertices of G are

mapped to exactly one vertex of each cycle of K.

There is a simple way to construct a tree hierarchy from Lemma 2.6.10. All we need to do is to

give a partitioning of V (G) for each cycle of K. For a cycle of length l, this partitioning is exactly

the pre-images of A1, . . . , Al as defined in conclusion 3 of Lemma 2.6.10. The proof of above theorem

follows from Lemma 2.6.3. Recall that Lemma 2.6.3 hold for any collection of cuts. The construction

is very similar to Lemma 2.6.10 except in this case the ordering of atoms in each cycle is arbitrary.

In this thesis we only work with tree hierarchy representation of cuts. Because of the generality

of above theorem we can use it when we discuss the structure of near minimum cuts in Section 2.7.

2.6.3 Properties of Tree Hierarchy and Cactus Representation

Before concluding this section we prove some general properties of and tree hierarchy of any collection

of cuts.

The following lemma provides an upper bound on the number of cut classes with τ number of

atoms.

Corollary 2.6.12. The cut classes of any collection F of cuts satisfy the following properties.

i) For any τ ≥ 4, the number of cut classes with at least τ atoms is at most n/(τ − 2).

ii) The number of all cut classes is at most 2n− 3.

iii) The number of atoms of all cut classes is at most 5n.

Proof. Let C1, C2 . . . , Ck be cut classes with at least τ atoms, By definition,

k∑
i=1

|ψ(Ci)| ≥ k · τ.

Applying Corollary 2.6.4 to these cut classes, there is a P of mutually disjoint atoms of them such

that

|P | ≥ −2(k − 1) +

k∑
i=1

|ψ(Ci)|.
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So,

k · τ ≤ |P |+ 2k ≤ n+ 2k,

where we used the fact that the atoms in P are pairwise disjoint. So, k ≤ n/(τ − 2). This proves

part (i).

Next we prove part (ii). We prove it by induction. If n = 2, then the claim obviously holds.

First, assume that F has no crossing cuts, i.e., every cut class is proper. Fix a vertex v ∈ V . Let

S be a family of subsets of V such that for any cut (A,A) ∈ F , if v /∈ A, the A ∈ S and otherwise

A ∈ S. It follows that S is a laminar family of subsets of V , i.e., no two sets in S cross. So,

|F| = |S| ≤ 2n− 3 and we are done.

Now, assume that F has a proper cut class C with atoms A1, . . . , Ak. For 1 ≤ i ≤ k, let Gi be

the graph where Ai is contracted. By Lemma 2.6.3 every cut in F − C is in exactly one Gi. By the

induction hypothesis the number of cut classes of each Gi is at most 2(|Ai|+ 1)− 3. So, the number

of cut classes of G is at most

1 +

k∑
i=1

(2|Ai| − 1) ≤
k∑
i=1

2|Ai| − 3 ≤ 2n− 3,

where the first inequality follows by the assumption that C is a proper cut class and k ≥ 4, and the

second inequality follows by the fact that atoms of C form a partition of V .

It remains to prove part (iii). Suppose there are k cut classes with at least 4 atoms. By

Corollary 2.6.4,

∑
C
|ψ(C)| =

∑
C:|ψ(C)|≥4

|ψ(C)|+
∑

C:|ψ(C)|=2

2 ≤ n+ 2k + 2(2n− k) = 5n.

where the last inequality follows by part (ii) that the number of all cut classes is at most 2n.

Lemma 2.6.13. For any collection F of cuts of a graph G, in all (except possibly one) of the cut

classes there is an atom which is a subset of at least n/2 of the vertices of G.

Proof. Let C be a cut class such that for any A ∈ ψ(C), |A| < n/2. If such a cut class does not exist,

we are already done. By Lemma 2.6.3 for any cut class C′ 6= C there exists an atom A∗ ∈ ψ(C) and

B∗ ∈ ψ(C′) such that A∗ ∪B∗ = |V |. Since |A∗| < n/2, |B∗| ≥ n/2 and we are done.

Lemma 2.6.14. Let C1, C2, . . . , C2l+2 be cut classes of a collection F of cuts of G for l ≥ 1. Then

there exists a cut class Ci that has an atom with at least min{n/2 + l, 2n/3} vertices.

Proof. For a cut class C let

f(C) := max
A∈ψ(C)

|A|.
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Let C1 be a cut class that maximizes f(.) and if there are multiple maximizers, let C1 be one with

maximum number of atoms. Also, let A1 ∈ ψ(C1) be an atom of C1 with maximum number of

vertices.

By Lemma 2.6.3, for any 2 ≤ i ≤ 2l+2 there is an atom Ai ∈ ψ(Ci) such that for some Bi ∈ ψ(C1),

Ai ∪Bi = V . First, we show that Bi = A1 for all 2 ≤ i ≤ 2l + 2. By definition of Ai,

|Ai| ≥ n− |B| ≥ |A1|.

By definition of C1, both of the above inequalities must be equality, so |Ai| = |A1| and C1 must be

a non-proper cut class. But then f(Ci) ≥ f(C1) and |ψ(Ci)| ≥ |ψ(C1)| which is in contradiction with

the definition of C1. So, Bi = A1.

Next, we show that if f(C1) < 2n/3, then for any i, j ≥ 2 such that i 6= j we either have Ai ⊆ Aj
or Aj ⊆ Ai. Since Ai, Aj ⊆ A1, by part (iii) of Lemma 2.6.3, Ai, Aj do not cross. So, if Ai 6⊆ Aj

and Ai 6⊆ Ai we must have Ai ∪Aj = V . Therefore,

|A1| = f(C1) ≥ max{|Ai|, |Aj |} ≥ |A1|+ |A1|/2 = n− |A1|/2.

Therefore, |A1| ≥ 2n/3 and we are done.

So, perhaps after renaming assume that

A2l+2 ⊆ A2l ⊆ . . . ⊆ A2 ⊆ A1.

Next, we show that |A2l+2| ≥ |A1 − 2l. By part (iv) of Lemma 2.6.3 for any 1 < i < 2l + 2 either

Ai 6= Ai+1 or Ai 6= Ai−1. Furthermore, if for 1 ≤ i < 2l + 1, Ai = Ai+1, then one of Ci, Ci+1 has

two atoms and the other one hast at least 4 atoms. But this means that |Ai+2| ≤ |Ai| − 2. Putting

them together, for any i ≥ 1, either |Ai+1| ≤ |Ai| − 1 or |Ai+2| ≤ |Ai| − 2. So,

|A2l+2| ≤ |A1| − 2l

But by definition of A2l+2, A1 ∪A2l+2 = V . Therefore,

|A1| ≥ n− |A2l+2| ≥ n− |A1|+ 2l.

So |A1| ≥ n/2 + l which completes the proof.

2.7 Structure of Near Minimum Cuts

In this section we discuss properties of near minimum cuts of a ∆-edge connected graph. Similar

to the previous section all of our statements hold for fractional graphs as well but for simplicity of
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notations we work with integral graphs.

For η > 0, a cut (A,A) is a (1 + η)-near minimum cut if |δ(A)| < (1 + η)∆. In the first part of

this section we discuss structure of near minimum cuts for values of η ≤ 1/5. In the second part we

characterize larger values of η.

2.7.1 Structure of (1 + η) near min cuts for small η

We start by providing some basic lemmas. The following lemma proves a generalization of Lemma 2.6.5

to crossing near minimum cuts.

Lemma 2.7.1. Let (A,A) and (B,B) be two crossing cuts of G and let (A,A) be a (1 + η) near

minimum cut. Then,

max{|δ(A ∩B)|, |δ(A ∪B)|, |δ(A−B)|, |δ(B −A)|} ≤ |δ(B)|+ η∆.

Proof. We prove the lemma only for A ∩B; the rest of the cases can be proved similarly.

|δ(A ∩B)|+ |δ(A ∪B)| ≤ |δ(A)|+ |δ(B)| ≤ (1 + η) ·∆ + |δ(B)|.

Since |δ(A∪B)| ≥ ∆, we have |δ(A∩B)| ≤ |δ(B)|+η ·∆. This completes the proof of the lemma.

The following lemma is proved in [Ben97]

Lemma 2.7.2 ([Ben97, Lem 5.3.5]). Let (A,A) and (B,B) be two crossing (1 + η) near minimum

cuts of G. Then |E(A ∩B,A−B)| ≥ (1− η)∆
2 .

Note that by symmetry it can be derived from the above lemma that

|E(A ∩B,B −A)| ≥ (1− η)
∆

2

|E(A ∪B,A−B)| ≥ (1− η)
∆

2

|E(A ∪B,B −A)| ≥ (1− η)
∆

2

It turns out the representation of near minimum cuts is more complicated than the cactus

representation. Unfortunately, Lemma 2.6.6 does not naturally extend to near minimum cuts. In

fact, one of our significant contributions is a generalization of Lemma 2.6.6 to the system (1 + η)

near minimum cuts for some absolute constant value of η (see Section 3.2). Next, we describe the

polygon representation defined in [Ben95] and then generalized in [BG08] to represent the set of

near minimum cuts of each of the cut classes of G.

Definition 2.7.3. The polygon representation of a cut class C possesses the following properties:
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Figure 2.7.8: The left graph shows A 7-edge connected graph. The dashed blue lines show a cut
class C of cuts of value at most 8, i.e., (1+1/7)-near minimum cuts. The right image shows the
polygon representation of C. The blue lines in the right image are the representing diagonals. This
representation has 8 outside atoms and {1} is the only inside atom. The system of near minimum
cuts corresponding to sets ({2, 3}, {2, 3}), . . . , ({8, 9}, {8, 9}), ({9, 2}, {9, 2}) shows an 8-cycle for the
inside atom {1}.

• A representing polygon is a regular polygon with a collection of distinguished representing

diagonals, with all polygon-edges and diagonals drawn by straight lines in the plane. These

diagonals divide the polygon into cells.

• Each atom of ψ(C) is mapped to a (different) cell of this polygon; some cells may contain no

atoms.

• No cell has more than one incident polygon edge; each cell incident to the polygon boundary

contains an atom which we call an outside atom. The rest of the atoms are called inside atoms.

• Each representing diagonal defines a cut, with sides being the union of the atoms contained

by cells on each side of the diagonal; The collection of cuts C is equal to the collection of cuts

defined by representing diagonals.

See Figure 2.7.8 for an example of a polygon representation of a cut class of near minimum cuts.

Benczur [Ben97] show that any cut class of (1 + η) near minimum cuts for small value of η

possesses a polygon representation.

Theorem 2.7.4 ([Ben97, Theorem 5.2.2]). If C represents a cut class of (1+η) near minimum cuts

and η ≤ 1/5, then it possesses a polygon representation.
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The proof of above theorem is rather complicated. We refer the interested reader to [Ben97, Ch.

5]. Note that once we have the representation of a single cut class, by Theorem 2.6.11 we can plug it

into the tree hierarchy to represent all near minimum cuts. Observe that if C is a cut class of minimum

cuts then every diagonal of the representing polygon is a representing diagonal. Furthermore, we do

not have any inside atoms. From above theorem for any cut class C of (1 + η) near minimum cuts

for η ≤ 1/5, the number of cuts in C may be significantly smaller than |ψ(C)| · (|ψ(C)| − 3).

Corollary 2.7.5. For any η ≤ 1/5 the number of cuts in any cut class C of (1 + η) near minimum

cuts is at most |ψ(C)| · (|ψ(C)| − 3).

Stronger forms of above theorem are proved in [NNI94].

Before concluding this part we describe more properties of inside atoms. Benczur [Ben97] sug-

gested a simple combinatorial argument to distinguish between inside atoms and outside atoms. To

describe this argument we first need to define a k-cycle of cuts.

Definition 2.7.6 (Benczur [Ben97, Definition 5.3.1]). We say that k ≥ 4 sets Si ⊂ V , for 1 ≤ i ≤ k,

form a k-cycle if

• Bi crosses both Bi−1 and Bi+1;

• Bi ∩Bj = ∅ for j 6= i− 1, i or i+ 1; and

•
⋃

1≤i≤k Bi 6= V .

See Figure 2.7.8 for an example of a 8-cycle. One of the main differences between a collection of

minimum and a collection of near minimum cuts is that minimum cuts do not admit any k-cycle.

Benczur in [Ben97] showed that the collection (1 + η) near minimum cuts does not have a k-cycle

for k ≤ 1/η-cycle. In particular, 6/5 near minimum cuts do not have any k-cycle for k ≤ 5.

Lemma 2.7.7 (Benczur [Ben97]). For any η < 1, the set of (1 + η) near minimum cuts of G does

not have any k-cycle for k ≤ 1/η.

Proof. The proof is based on [BG08, Lem 22]. Suppose there is a cycle of B1, . . . , Bk of (1 + η)

near minimum cuts, and let A = V −
⋃

1≤i≤k Bi. The following inequality follows from the fact that

B1, . . . , Bk is a k-cycle.

|δ(A)|+
k∑
i=1

|δ(Bi ∩Bi+1)| ≤
k∑
i=1

|δ(Bi)|.

In any edge that contributes to the LHS also contributes to the RHS. Furthermore, only edges in

E(Bi ∩ Bi+1, A) contribute more than once to the LHS, but these edge contribute exactly twice to

the LHS and the RHS.

Now, we get

∆ ≤ |δ(A)| ≤
k∑
i=1

(|δ(Bi)| − |δ(Bi ∩Bi+1)|) <
k∑
i=1

((1 + η)∆−∆) = kη.
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So, k > 1/η.

Benczur and Goemans [BG08] show that the set of inside atoms of the polygon representation

of a cut class C are atoms A such that there is a k-cycle that does not intersect

Theorem 2.7.8 ([BG08, Def 4, Prop 5]). Let C be a collection of (1 + η)-near minimum cuts for

η ≤ 1/5, and A ∈ ψ(C). Then any A ∈ ψ(C) is an inside atom iff there exists a k-cycle B1, . . . , Bk

such that A ⊆ V −
⋃k
i=1Bi.

In the example in Figure 2.7.8, {1} is an inside atom. We say k-cycle B1, . . . , Bk is for an inside

atom A if A ⊆ V −
⋃k
i=1Bi. The following technical lemma also proved in [BG08] will be useful

later.

Lemma 2.7.9 ([BG08, Lem 12]). Let C be a cut class of (1 + η) near minimum cuts of G for

η ≤ 1/5, and let (S, S) ∈ C contain an inside atom A ∈ ψ(C). For any k-cycle B1, . . . , Bk for A,

there exists i such that Bi ⊂ S.

2.7.2 Structure of α near minimum cuts for large α

In this part we discuss the structure of cuts of value at most α times the minimum cut for values of

α that can depend on n. To the best of our knowledge there is no unified representation for values

of α > 6/5. So, in this part we mainly study the number of these cuts.

We prove the following result due to Karger [Kar93].

Theorem 2.7.10 (Karger [Kar93]). For any ∆-edge connected graph G = (V,E) and any α ≥ 1

the number of cuts of value at most α ·∆ is at most 4n2α.

Proof. Nash and Williams [NW61] show that any ∆-edge connected graph contains ∆/2 edge disjoint

spanning trees. Let T1, . . . , T∆/2 be ∆/2 edge disjoint spanning trees of G. Consider any cut (S, S)

of size at most α ·∆. Therefore, the expected number of edges of (S, S) in a uniformly random tree

among T1, . . . , T∆/2 is at most 2α. Now, by Markov inequality with probability 1/(4α) a uniformly

random tree has at most 2α edges in (S, S).

Now, fix a tree Ti, and suppose a set F of edges of Ti are in a cut. We claim that for any F ⊆ Ti
this cut is uniquely defined based on edges in F . First, we fix a vertex u on one side of the cut.

Then, for every other vertex v we count the number of edges of F in the path from u to v. If this

number is even, then v is in the same side of the cut as u, otherwise u is on the other side.

Now we can give a simple procedure to count the number of cuts of size ∆α. First we choose a

random spanning tree Ti and then we count all cuts that cut at most 2α edges of Ti. The number

of these cuts is at most 2
(
n−1
2α

)
. In this way we have counted at least 1/(4α) fraction of all α · ∆

near minimum cuts. So, the number of α ·∆ near minimum cuts is at most

8α

(
n− 1

2α

)
≤ 4n2α.
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The above proof is based on [Kar00, Lemma 3.2].

2.8 Random Spanning Trees

Let G = (V,E) be an unweighted graph, and let T be the set of all spanning trees of G. For non-

negative weighted λ : E → R+ assigned to the edges of G, a λ-random spanning tree distribution is

a distribution µ where the probability of each tree T is

Pµ [T ] ∝
∏
e∈E

λe.

Observe that if λe = 1 for all e ∈ E, then µ is exactly the uniform distribution on spanning trees

of G. For rational λe’s, if we replace each edge e with Cλe parallel edges (for an appropriate choice

of C), then a uniform spanning tree in the corresponding multigraph gives a λ-random spanning

tree of G. Because of this almost all properties of uniform spanning trees naturally generalize to

(λ)-random spanning tree distributions. We refer the interested readers to [LP13].

We start this section by stating the The Kirchoeff’s matrix tree theorem (see [Bol02]). The

weighted Laplacian L of G is defined as follows (see Section 7.2 for properties of this matrix).

L(u, v) =


−λe e = (u, v) ∈ E∑
e∈δ({u}) λe u = v

0 otherwise.

(2.8.1)

Matrix tree theorem states that for any graph G,
∑
T∈T

∏
e∈T λe is equal to the absolute value of

any cofactor of the weighted Laplacian.

Theorem 2.8.1 (Matrix Tree Theorem). For any graph G any λ : E → R+ and any u, v ∈ V .

∑
T∈T

∏
e∈T

λe = det(Lu,v) = det′(L).

where by Lu,v we mean the minor of L where the u-th row and v-th column are removed, and by

det′(L) we mean the product of the non-zero eigenvalues of L.

One of the important consequence of above theorem is that it gives an efficient algorithm to

compute the probability that an edge e is in a λ-random tree T . For this purpose, we can evaluate∑
T∈T

∏
e∈T λe for both G and G/{e} (in which edge e is contracted) using the matrix tree theorem,

P [e ∈ T ] =

∑
T3e

∏
e′∈T λe′∑

T

∏
e′∈T λe′

. (2.8.2)
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Similarly, we can compute the probability that e /∈ T ,

P [e /∈ T ] =

∑
T 63e

∏
e′∈T λe′∑

T

∏
e′∈T λe′

(2.8.3)

We remark that an alternative approach for computing P [e ∈ T ] is to use the fact that P [e ∈ T ]

is equal to λe times the effective resistance of e in G treated as an electrical circuit with conductances

of edges given by λ (see Subsection 2.8.2 below).

2.8.1 Sampling a λ-Random Tree

There is a host of results (see [Gué83, Kul90, CMN96, Ald90, Bro89, Wil96, KM09] and references

therein) on obtaining polynomial-time algorithms for generating a uniform spanning tree, or a λ-

random spanning tree. Almost all of them can be easily modified to allow arbitrary λ; however, not

all of them still guarantee a polynomial running time for general λe’s. The problem is that many of

these algorithms are based on running a random walk on G, and if there is an exponential gap (in n)

between λe’s then the mixing time of the random walk can also be exponential in n (see Section 7.4

for background on random walks).

So, in this section we describe an iterative approach similar to [Kul90]. The idea is to order the

edges e1, . . . , em of G arbitrarily and process them one by one, deciding probabilistically whether to

add a given edge to the final tree or to discard it. More precisely, when we process the j-th edge

ej , we decide to add it to a final spanning tree T with probability pj being the probability that ej

is in a λ-random tree conditioned on the decisions that were made for edges e1, . . . , ej−1 in earlier

iterations. Clearly, this procedure generates a λ-random tree, and its running time is polynomial as

long as the computation of the probabilities pj can be done in polynomial time.

To compute these probabilities efficiently we note that, by (2.8.2) p1 is easy to compute. Now,

if we choose to include e1 in the tree then:

p2 = P [e2 ∈ T |e1 ∈ T ] =

∑
T ′3e1,e2

∏
e∈T ′ λe∑

T ′3e1
∏
e∈T ′ λe

=

∑
T ′3e1,e2

∏
e∈T ′−e1 λe∑

T ′3e1
∏
e∈T ′−e1 λe

.

As one can see, the probability that e2 ∈ T conditioned on the event that e1 ∈ T is equal to the

probability that e2 is in a λ-random tree of a graph obtained from G by contracting the edge e1.

(Note that one can sum up the λ’s of the multiple edges formed during the contractions and replace

them with one single edge.) Similarly, if we choose to discard e1, the probability p2 is equal to the

probability that e2 is in a λ-random tree of a graph obtained from G by removing e1. In general,

pj is equal to the probability that ej is included in a λ-random tree of a graph obtained from G by

contracting all edges that we have already decided to add to the tree, and deleting all edges that we
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have already decided to discard. But, we can compute all pj ’s simply using the matrix tree theorem

and (2.8.2).

2.8.2 Electrical Networks and λ-Random Trees

We may view the graph G = (V,E) as an electrical network. For any edge e = (u, v) ∈ E there is a

wire with resistance 1/λe, or equivalently with conductance λe between u and v.

We adopt a similar notation as in [SS11] to describe the electrical networks. Consider an arbitrary

orientation of the edges of G. Define the matrix B ∈ R|E|×|V | as follows,

B(e, v) =


1 if v is e’s head

−1 if v is e’s tail

0 otherwise.

Also, let Λ = R|E|×|E| be the diagonal matrix where Λ(e, e) = λe. It follows from (2.8.1) that

L = BTΛB.

Let g : V → R+ be a function of currents that we injected at the vertices of G, and let i(e) be the

current induced in an edge e in the direction of the current and φ(v) be the potential at a vertex v.

We say i(.) and φ(.) define a valid electrical flow if they satisfy the Kirchhoff’s law and the Ohm’s

law. By Kirchhoff’s law the sum of the currents entering a a vertex u is equal to the current that

injected at u, i.e., for any vertex u, ∑
e=(u,v)

i(e) = g(u),

or in a matrix form,

BT i = g.

By Ohm’s Law, the current flow in an edge is equal to the potential difference across its endpoints

times the conductance of that edge, for any edge e = (v, u)

i(e) = λe(B(e, v)φ(v) +B(e, u)φ(u)),

or in a matrix form,

i = ΛBφ

Combining these facts,

g = BT i = BTΛBφ = Lφ.

Note that the Laplacian matrix L is singular, the first eigenvalue is always zero and the first

eigenfunction is the constant function (see Section 7.1 for background on eigenvalues and eigen-

functions). If G is connected, then all other eigenvalues of L are positive. If g ⊥ ker(L) then we
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have

L†g = φ, (2.8.4)

where L† is the pseudo-inverse of L (see Section 7.1 for definition).

Suppose we inject one unit of flow at u and extract one from v, i.e., g = 1u→v = 1u − 1v. Since

g ∈ ker(L), the potential at each vertex v′ is L†1u→v(v
′). We can now define the effective resistance,

Reff(u, v) between two vertex u, v ∈ V . If g = 1u→v = 1u − 1v, that is we inject one unit of flow at

u and extract one from v, then Reff(u, v) = φ(u)− φ(v). In other words, by (2.8.4),

Reff(u, v) = 〈1u→v, L†1u→v〉. (2.8.5)

Observe that effective resistance is always non-negative (see [GBS08] for the properties of the effec-

tive). The name effective resistance follows from the fact that if we replace the whole network with

a wire of conductance 1/Reff(u, v) between u and v, then φ(u) and φ(v) remains unchanged.

Say e is oriented from u to v. For any edge f = {u′, v′} oriented from u′ to v′ let ie(f) be the

current that flows from u′ to v′ when a unit current is imposed between the endpoints of e, i.e.,

ie(f) := λf · 〈1u′→v′ , L†1u→v〉. (2.8.6)

For example, Reff(u, v) = ie(e).

Now we are ready to describe the connection between electrical networks and λ-random spanning

trees.

Proposition 2.8.2. For any graph G and any λ : E → R+, and any e = (u, v) ∈ E, a λ-random

spanning tree T satisfies the following

P [e ∈ T ] = ie(e) = Reff(u, v) · λe.

Proof. For a function g : V → R, let ggT be the matrix where ggT (u, v) = g(u) ·g(v) for all u, v ∈ V .

We use the following lemma which is based on Sherman-Morrison Formula (see [GL96, Section

2.1.3]).

Lemma 2.8.3. For any symmetric matrix M ∈ RV×V , and any function g ⊥ ker(M),

det(M + ggT ) = det(M)(1 + 〈g,M†g〉).

Now, let g =
√
λe1u→v. Observe that L− ggT is the same as the Laplacian matrix of the graph
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G− {e}. Therefore, by (2.8.3),

P [e ∈ T ] = 1− P [e /∈ T ] = 1− det′(L− ggT )

det′(L)
= 1− det′(L)(1 + 〈g, L†g〉)

det′(L)

= λe〈1u→v, L†1u→v〉 = λeReff(u, v),

where the last equation follows by (2.8.5).

The following properties of the function ie(.) are useful.

Fact 2.8.4. For any two edges e, f , ie(f)λe = if (e)λf .

Proof. Say e = (u, v), f = (u′, v′). Since L† is symmetric,

ie(f)λe = λe · λf 〈1u′→v′ , L†1u→v〉 = λe · λf 〈1u→v, L†1u′→v′〉 = if (e)λf .

Fact 2.8.5 (Lyons, Peres [LP13, Exercise 4.29]). Let e, f ∈ E not sharing the same endpoints. Let

iec(.) be the function ie(.) in the graph G/{f}. Then,

ie = iec +
ie(f)

if (f)
if .

2.8.3 Negative Correlation and Concentration Inequalities.

One of the important consequence of Proposition 2.8.2 is that we can show a negative correlation

between the edges of a λ-random spanning tree distributions (see [LP13, Chapter 4] for a proof using

random walks).

Lemma 2.8.6. For any graph G, λ : E → R+, and any two edges e, f ∈ E, the event that e is in a

λ-random spanning tree T is negatively correlated with the event f is in T ,

P [e, f ∈ T ] ≤ P [e ∈ T ] · P [f ∈ T ] . (2.8.7)

More generally, for any F ⊆ E,

PT [∀e∈F , e ∈ T ] ≤
∏
e∈F

P [e ∈ T ] . (2.8.8)

Proof. Here, we prove (2.8.7); equation (2.8.8) can be proved similarly. First, by the Bayes rule, it

is sufficient to show that

P [e ∈ T |f ∈ T ] ≤ P [e ∈ T ] .
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Also, P [e ∈ T |f ∈ T ] is the same as the probability of e being in the random spanning tree of the

graph G/{f} (in which edge f is contracted). Contracting an edge f is the same as letting λf =∞,

or equivalently, shortcutting f in the electrical network.

By the Rayleigh monotonicity property, (see [LP13, Section 2]), if we increase the conductance

of any edge of G the effective resistance between any pair of vertices only decreases. So, by Propo-

sition 2.8.2,

ReffG/{f}(e) ≤ ReffG(e) ⇒ P [e ∈ T |f ∈ T ] = λe · ReffG/{f}(e) ≤ λe · ReffG(e) = P [e ∈ T ] .

One of the direct consequences of above lemma is that the set of edges of G satisfy Chernoff types

of bounds, namely, for any subset F ⊆ E the number of edges of F in a random tree T is concentrated

around its expectation (we will provide a much stronger characterization in Subsection 2.9.3).

Theorem 2.8.7. For each edge e, let Xe be an indicator random variable associated with the event

[e ∈ T ], where T is a λ-random tree. Also, for any subset F of the edges of G, define X(F ) =∑
e∈F Xe. Then, we have

P [X(F ) ≥ (1 + δ)E [X(F )]] ≤
(

eδ

(1 + δ)1+δ

)E[X(F )]

.

Usually, when we want to obtain such concentration bounds, we prove that the variables {Xe}e
are independent and we use the Chernoff bound. Although in our case the variables {Xe}e∈E are not

independent, they are negatively correlated, and it follows directly from the result of Panconesi and

Srinivasan [PS97] that the upper tail part of the Chernoff bound requires only negative correlation

and not the full independence of the random variables. So, the above theorem follows directly from

[PS97].

2.8.4 λ-Random Trees and Determinantal Measures

In this last part we describe a beautiful result of Burton and Pemantle that derives the exact

probability that a set of edges appear in a random spanning tree as a determinant. Recall that ie(f)

is the current that flows across f when a unit current is imposed between the endpoints of e (see

(2.8.6)). Burton and Pemantle [BP93] proved the following, known as Transfer-Current Theorem

which also gives the exact value of correlation between any two edges in the graph.

Theorem 2.8.8 (Burton, Pemantle [BP93]). For any distinct edges e1, . . . , ek ∈ G, let M ∈ Rk×k

where M(i, j) = iei(ej). Then,

P [e1, . . . , ek ∈ T ] = det(M).
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In particular, for any two edges e and f , we get a quantitative version of the negative correlation

between e and f ,

P [e, f ∈ T ]− P [e ∈ T ] · P [f ∈ T ] = −ie(f) · if (e) = −λe
λf
ie(f)2.

where the last equality follows by Fact 2.8.4. Observe that if ie(f) · if (e) = 0, then we can say e is

independent of f .

One of the important consequence of the above theorem is that λ-random spanning tree dis-

tributions are determinantal measures (see [Lyo03] for the definition of determinantal measures).

Therefore, they are special cases of strongly Rayleigh measures.

2.9 Strongly Rayleigh Measures

In this section we continue discussing properties of λ-random spanning trees. But instead of directly

working with these probability distributions we discuss a more general class, called strongly Rayleigh

probability measures. It turns out that, strongly Rayleigh measures satisfy several properties that

will be crucially used in analyzing our algorithm for the traveling salesman problem. While dis-

cussing properties of the strongly Rayleigh measures, we provide several examples and we discuss

the consequences to the λ-random spanning tree distributions.

Most of the materials of this section are based on a recent work of Borcea, Brändén and Liggett

[BBL09] on strongly Rayleigh probability measures. Strongly Rayleigh measures include determi-

nantal measures (in particular uniform and λ-random spanning tree measures), product measures,

etc. They also enjoy all the virtues of negative dependence and negative association.

Let E be the ground set of elements with m = |E| (note that we intentionally use E for the ground

set of elements, this is because later we use strongly Rayleigh measures to analyze distribution of

edges in λ-random spanning trees sampled). A non-negative function µ : 2E → R+ is a probability

measure on subsets of E, if ∑
S⊆E

µ(S) = 1.

Let BE be the set of all probability measures on the Boolean algebra 2E . For an element e ∈ E, let

Xe be the indicator random variable for e, and for S ⊆ E, let XS =
∑
e∈S Xe.

Let Pm be the set of all multi-affine polynomials in m variables g(ye : e ∈ E) with non-negative

coefficients such that g(1, 1, . . . , 1) = 1. There is a one-one correspondence between BE , and Pm: For

µ ∈ BE we may form its generating polynomial, namely g(y) =
∑
S⊆E µ(S)yS , where yS =

∏
e∈S ye.

A polynomial g ∈ Pm is called real stable if g(ye : e ∈ E) 6= 0 whenever Im(ye) > 0 for all e ∈ E.

For example, this simply implies that a polynomial in one variable is real stable if and only if all its

roots are real (this is because if c ∈ C is a root of g ∈ Pm, then so is the conjugate of c). A measure
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µ ∈ BE is called strongly Rayleigh if its generating function is real stable. Equivalently, Brändén

[Brä07] proved that a multi-affine polynomial g ∈ Pm is real stable if and only if

∂g

∂ye
(x)

∂g

ye′
(x) ≥ ∂2g

∂ye∂ye′
(x)g(x),

for all x ∈ Rm, and e, e′ ∈ E. As an example, if xe = 1 for all e ∈ E, then ∂g
∂ye

= E [Xe]. So,

above inequality implies E [Xe] ·E [Xe′ ] ≥ E [Xe ·X ′e], i.e., elements are negatively correlated in any

strongly Rayleigh measure.

2.9.1 Operations defined on Strongly Rayleigh Measures

First, we describe several operations (Projection, Conditioning and Truncation) that maintain the

strongly Rayleigh property.

Definition 2.9.1 (Projection). For any µ ∈ BE and F ⊂ E the projection of µ onto 2F is the

measure µ′ obtained from µ by restricting the samples to the subsets of E′, i.e.:

∀S′ ⊆ F : µ′(A) :=
∑

S⊆E:S∩F=S′

µ(B)

Borcea et al. [BBL09] show that any projection of a strongly Rayleigh measures is still a strongly

Rayleigh measure. For example, if µ is a uniform measure on the spanning trees of G = (V,E),

and F = δ(A) ⊂ E is the set of edges in the cut (A,A), the projection of µ on 2δ(A) is a strongly

Rayleigh measure.

Definition 2.9.2 (Conditioning). For any element e ∈ E, the measure obtained from µ by condi-

tioning on Xe = 0 is defined as follows:

∀S′ ⊆ E − {e} : µ′(S′) :=
µ(S′)∑

S⊆E−{e} µ(S)

Similarly, we can define the measure obtained by conditioning on Xe = 1.

For example, if µ is a uniform measure on the spanning trees of G, the measure obtained by

conditioning on Xe = 0 for some e ∈ E is a uniform measure on spanning trees of G − {e}, so is a

strongly Rayleigh measure. Similarly, we can condition on the set of spanning trees that contain all

of the edges of a set S, and none of the edges of S′. More generally, for A ⊆ V , the measure obtained

by conditioning on
∑
e∈E(A)Xe = |A| − 1 (i.e. having an spanning tree inside A), can be seen as a

product of a uniform spanning tree measure on G[A] and a uniform spanning tree measure on G/A

(G where all vertices of A are contracted). Such a measure is not a uniform spanning tree measure

on E, but is a product of two spanning tree measures, and so is a strongly Rayleigh measure on E.
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Borcea et al. proved something stronger, they showed for any integer k, if µ is strongly Rayleigh,

then so is µ conditioned on
∑
eXe = k, First we define the truncation of a measure.

Definition 2.9.3 (Truncation). For any 1 ≤ k ≤ l ≤ |E|, the truncation of µ to [k, l] is the

conditional measure µk,l, where

∀k ≤ |S′| ≤ l : µk,l(S′) =
µ(S′)∑

S⊆E:k≤|S|≤l µ(S)

Borcea et al. proved that if l − k ≤ 1, the truncation of any strongly Rayleigh measure is still a

strongly Rayleigh measure.

Theorem 2.9.4 ([BBL09, Corollary 4.18]). If µ ∈ BE is a strongly Rayleigh probability measure

and 0 ≤ p ≤ q ≤ |E| such that l − k ≤ 1, then µk,l is strongly Rayleigh.

For example, let µ be the uniform measure on the spanning trees of G = (V,E), and S ⊂ E.

Let µ′ be the projection of µ on S, and let µ′′ be the projection of µ on S. For any 1 ≤ k ≤ |S|
such that k ≤ 1, µ′k and µ′′n−1−k are strongly Rayleigh measures. Moreover, since any spanning tree

sampled from µ has exactly |V | − 1 = n − 1 edges, XS = k if and only if XS = n − 1 − k. So, µ′k

and µ′′n−1−k are projections of the same set spanning trees into the complementary sets S, S.

It is worth noting that random spanning tree distributions are not closed under the projection

or truncation operations. So, once we generalize a random spanning tree distribution to a strongly

Rayleigh measure, we are allowed to use several properties that we could not use if we restrict our

analysis to the random spanning tree distributions.

2.9.2 Properties of Strongly Rayleigh Measures

Next we describe several properties of the strongly Rayleigh measures that are essential in our proofs.

We start with the negative association property.

Definition 2.9.5 (Increasing Events and Functions). An increasing event, A, on 2E is a collection

of subsets of E that is closed under upward containment, i.e. if A ∈ A and A ⊆ B ⊆ E, then

B ∈ A. Similarly, a decreasing event is closed under downward containment. An increasing function

f : 2E → R, is a function where for any A ⊆ B ⊆ E, we have f(A) ≤ f(B).

For example, an indicator function of an increasing event is an increasing function. If E is the

set of edges of a graph G, then the existence of a Hamiltonian cycle is an increasing event, and the

3-colorability of G is a decreasing event.

A measure µ ∈ BE is positively associated if for any increasing functions f, g : 2E → R,

Eµ [f · g] ≥ Eµ [f ] · Eµ [g] . (2.9.1)
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One of the fundamental inequalities in probability theory is the FKG inequality, named after For-

tuinKasteleynGinibre. FKG inequality states that for µ ∈ BE , if µ satisfies the positive lattice

condition, i.e., for any S, S′ ⊆ E,

µ(S ∩ S′) · µ(S ∪ S′) ≥ µ(S) · µ(S′),

then µ is positively associated. For example, consider an Erdös-Réyni random graph distribution on

G, i.e., let µ be the product distribution where each edge e ∈ E is included with a fixed probability

p independent of other edges, and let f be the indicator function that a sample has a Hamiltonian

cycle, and g be the indicator function that a sample is not 3-colorable. It is an easy exercise that µ

satisfies the positive lattice condition, so we can deduce that if we know a sample has a Hamiltonian

cycle, it is less likely that it is 3-colorable.

In this thesis we are mainly interested in measures with negative association. The definition of

negative association is not simply the inverse of (2.9.1). The reason is that no measure would satisfy

such a property: say f and g are indicator functions of a fixed e ∈ E. Then, for all measures µ ∈ BE ,

E [f ] · E [g] ≥ E [f · g]. Instead, we require that f and g are functions of disjoint subsets of E,

Definition 2.9.6 (Negative Association). A measure µ ∈ BE is negatively associated or NA if for

any increasing functions f, g : 2E → R, that depend on disjoint sets of edges,

Eµ [f ] · Eµ [g] ≥ Eµ [f · g]

Feder and Mihail [FM92] proved that uniform measures on balanced matroids (and in particular

λ-random spanning tree distributions) are negative associated. Borcea et al. in [BBL09] proved

that, more generally, strongly Rayleigh measures are negatively associated.

Theorem 2.9.7 ([BBL09]). Strongly Rayleigh measures are negatively associated.

Observe that negative association is a stronger property compared to negative correlation, since

we can prove e, e′ ∈ E are negatively correlated by letting f, g be the indicator functions of edges

e, e′ in Definition 2.9.6. The following fact is a simple application of negative association.

Fact 2.9.8. If µ is a λ-random spanning tree distribution on G = (V,E), then for any S ⊂ E, and

p ∈ R we have

1. ∀e ∈ E − S : Eµ
[
Xe

∣∣XS ≥ p
]
≤ Eµ [Xe]

2. ∀e ∈ E − S : Eµ
[
Xe

∣∣XS ≤ p
]
≥ Eµ [Xe]

The following corollary is a simple consequence of this:

Corollary 2.9.9. Let µ be a uniform measure on spanning trees of a graph G = (V,E), S ⊂ E,

s = Eµ [XS ]. Recall that rank(S) be the rank of S in the graphical matroid on G (see Section 2.3). For
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any set S′ ⊆ S, we have Eµ [XS′ |XS = 0] ≤ Eµ [XS′ ] + s, and Eµ [XS′ |XS = rank(S)] ≥ Eµ [XS′ ]−
rank(S) + s.

Proof. First, since µ is a measure on spanning trees, and each spanning tree has n − 1 = |V | − 1

vertices, we have E [XS |XS = 0] = E [XS ] + s, and E [XS |XS = rank(S)] = E [XS ] − rank(S) + s.

Second, since any spanning tree selects at least zero, and at most rank(S) edges from S, the XS = 0

is a decreasing event and XS = rank(S) is an increasing event. So, the statement of corollary follows

from the negative association property.

The next important property that we describe in this part is the stochastically dominance prop-

erty on truncations of strongly Rayleigh measures.

Definition 2.9.10 ([BBL09, Definition 2.14]). For µ, ν ∈ BE, we say µ stochastically dominates ν

(ν � µ) if for any increasing event A on 2E, we have µ(A) ≥ ν(A).

Borcea et al. showed that a truncation of strongly Rayleigh measures is stochastically dominated

by a truncation of a larger value:

Theorem 2.9.11 ([BBL09, Theorem 4.19]). For any a strongly Rayleigh probability measure µ ∈ BE
and 1 ≤ k ≤ |E|, if P [XE = k] ,P [XE = k − 1] > 0, then µk−1 � µk.

As an example, let µ be the uniform measure on spanning trees of G = (V,E), and S ⊆ F ⊆ E.

Let µ′ be the projection of µ on 2F . Since µ′ is strongly Rayleigh, we have µ′k � µ′k+1, for any

integer k ≥ 0, where µ′k, µ
′
k+1 are well defined. Therefore, for any l ∈ R

Pµ′k+1
[XS ≥ l] ≥ Pµ′k [XS ≥ l] .

2.9.3 Properties of Rank Function of Strongly Rayleigh Measures

In this part we describe the ultra log-concavity (ULC) property of the rank function of strongly

Rayleigh measures. Recall that in Subsection 2.8.3 we proved the upper-tail of Chernoff-bound for

λ-random spanning tree distributions on any subset of edges using the negative correlation property.

In this section we show that there is a direct way to prove all Chernoff types of bounds for λ-random

spanning tree distributions.

Let µ ∈ BE be a strongly Rayleigh measure. The rank sequence of µ is the sequence

P [XE = 0] ,P [XE = 1] , . . . ,P [XE = m] .

Let g(y) be the generating polynomial of µ. The diagonal specialization of µ, ḡ(.) is a univariate

polynomial obtained by pretending g(.) as a univariate polynomial (i.e., considering g(y, y, . . . , y)).

Observe that ḡ(.) is the generating polynomial of the rank sequence of µ. If g(c) = 0 for c ∈ C, then

g(c, c, . . . , c) = 0. So, if g(.) is a real stable polynomial then so is ḡ. Since a univariate polynomial
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with real coefficients is stable if and only if all of its roots are real, ḡ(.) is a polynomial with real

roots.

Generating polynomials of probability distributions with real root are very well studied in the

literature. If ḡ(.) is a univariate polynomial of degree m with real roots, then coefficients of ḡ(.)

are corresponds to the probability density function of the convolution of a set of m independent

Bernoulli random variables. In other words, there are m independent Bernoulli random variables

B1, . . . , Bm with success probabilities p1, . . . , pm ∈ [0, 1] such that the probability that exactly k

variables succeed is the coefficient of yk in ḡ(.).

Fact 2.9.12. [BBL09, Pit97] The rank sequence of a strongly Rayleigh measure is the probabil-

ity distribution of the number of successes in m independent trials for some sequence of success

probabilities p1, . . . , pm ∈ [0, 1].

Now, if µ is a λ-random spanning tree measure, and µ′ is the projection of µ on S ⊆ E, then

the rank sequence of µ′, equivalently the distribution of XS , is the same as the distribution of |S|
independent bernoulli random variables. So, all Chernoff bounds that hold for independent bernoulli

random variables hold for XS as well.

The distribution of the number of successes of m independent trials is well studied in the literature

[Dar64, Hoe56, Gle75, Wan93, Pit97]. Dorrach [Dar64] proved that such a distribution is unimodal

(i.e., it has a single mode), and the mode differs from the mean by less than 1. Recall that the

mode is the value at which the probability mass function takes its maximum value. Moreover, by

Newton’s inequality [HLP52], a sum of independent bernoulli random variables is an Ultra Log-

concave distribution.

Definition 2.9.13 (Ultra Log Concavity [BBL09, Definition 2.8]). A real sequence {ak}mk=0 is log-

concave if a2
k ≥ ak−1 · ak+1 for all 1 ≤ k ≤ m − 1, and it is said to have no internal zeros if the

indices of its non-zero terms form an interval (of non-negative integers). We say that a non-negative

sequence {ak}mk=0 is ULC (ultra log-concave) if the sequence {ak/
(
m
k

)
}mk=0 is log-concave and have

no internal zeros.

The following proposition follows,

Proposition 2.9.14 ([HLP52, Dar64, BBL09]). The rank sequence of any strongly Rayleigh measure

is ULC, unimodal, and its mode differs from the mean by less than 1.

Suppose µ ∈ BE is a strongly Rayleigh measure, and let E [XE ] = p such that k < p < k + 1. In

the rest of this section we would like to lower bound P [Xe = k] and P [Xe = k + 1] with a function

of p, k that is independent of |E|.
For p ∈ [0,m], let Bm(p) be the set of all probability distribution of the number of successes in

m independent trials such that the expected number of successes is p. For any integer k ≥ 0 and
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any p ∈ [0,m], let

Ber(p, k) := min
m,µ∈Bm(p)

Pµ [exactly k trials succeed] . (2.9.2)

First, observe that if |k − p| ≥ 1, then the distribution with m = dpe trials such that bpc
of Bernoullis succeed with probability 1 (and the only possible last one succeed with probability

p− bpc) implies Ber(p, r) = 0. Therefore, we assume |k − p| < 1. Let µ∗ ∈ Bm(p) be a minimizer of

Ber(p, k). Hoeffding [Hoe56, Corollary 2.1] showed that Bernoullis take only one of three different

success probabilities, 0, x, 1, in µ∗, where x is any number in [0, 1]. Since µ∗ is allowed to have any

arbitrary number of trials m ≥ 0, we can further assume that none of the success probabilities in µ∗

is 0. Let

Bin(p, k) := min
m≥k
m≥p

(
m

k

)
(p/m)k(1− p/m)m−k.

Let 0 ≤ l∗ ≤ min{p, k} be the number of Bernoullis in µ∗ that have success probability 1. Then,

Ber(p, k) = Bin(p− l∗, k − l∗). So, for k − 1 < p < k + 1,

Ber(p, k) = min{Bin(p, k),Bin(p− 1, k − 1), . . . ,Bin(p− k + I [p < k] , I [p < k])}. (2.9.3)

So, to lower bound Ber(p, k), it is sufficient find a lower bound Bin(p − l, k − l) for any integer

0 ≤ l ≤ k − I [p < k].

Lemma 2.9.15. For any integer k ≥ 1 and k − 1 < p ≤ k,

Bin(p, k) ≥
(p
k

)k
· e−p,

and for any k < p < k + 1,

Bin(p, k) ≥
(p
k

)k
·min

{(
1− p

m∗
)m∗−k

,
(
1− p

m∗ + 1

)m∗+1}
.

where m∗ = bp+ 1c.

Proof. Since, k ≥ 1, for any m ≥ max{p, k},(
m

k

)
(p/m)k(1− p/m)m−k ≥ mk

kk
· p

k

mk
(1− p/m)m−k.

Since m must be an integer, if m = p, then p = k. So, Bin(p, k) = 1 and we are done. Otherwise, if

m = m∗, we are done by above equation. So, assume m ≥ m∗ + 1.

The lemma follows from the fact that (1− p/x)x−k is an increasing function of x for x ≥ k when

p ≤ k and (1− p/x)x is an increasing function of x for x ≥ p.
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First, assume that p ≤ k. For all x ≥ k,

∂(1− p/x)x−k

∂x
= (1− p/x)x−k ·

(
log(1− p/x) +

p(x− k)

x2(1− p/x)

)
We show that the RHS is non-positive. Computing the Maclaurin series of

log(1−p/x)+
p(x− k)

x2(1− p/x)
= −

∞∑
i=1

1

i
(p/x)i+

∞∑
i=1

(p/x)i− k
x

∞∑
i=1

(p/x)i ≤
∞∑
i=2

(p/x)i− p
x

∞∑
i=1

(p/x)i = 0.

where the last inequality uses p ≤ k. This completes the first conclusion of the lemma. To prove

the second conclusion we just need to let k = 0 in the above argument and we get

log(1− p/x) +
px

x2(1− p/x)
= −

∑
i = 1∞

1

i
(p/x)i +

∞∑
i=1

(p/x)i ≥ 0.

This completes the proof of lemma.

Now, we are ready to lower bound Ber(p, k).

Proposition 2.9.16. For any integer k, and k − 1 < p ≤ k,

Ber(p, k) ≥ (p− k + 1) · e−p.

Otherwise, if k ≤ p < k + 1,

Ber(p, k) ≥ min
{

1− p

k + 1
,
(
1− p

k + 2

)k+2}
Proof. The proof is a simple algebraic manipulation, and follows from the following inequalities,

First, for p ≥ 1 and m∗ = bp+ 1c,

1− p

m∗
≤ 1− p− 1

m∗ − 1
and 1− p

m∗ + 1
≤ 1− p− 1

m∗
.

Second, if 1 ≤ p < k, then (p− 1

k − 1

)k−1

≤ (p/k)k.

Otherwise if p ≥ k ≥ 1, then (p/k)k ≥ 1.

Next we describe a simple example to show an application of the above proposition.

Example 2.9.17. Let µ be a λ-random spanning tree distributions, and let v ∈ V such that

E [X(δ(v)) = 2]. Then,

P [X(δ(v)) = 2] ≥ Ber(2, 2) ≥ min{(1− 2/3), (1− 2/4)4} = 1/16.
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In other words, v will have an even degree in a random tree T with probability at least 1/16.

If we do a more careful analysis we can improve 1/16 to 1/e. Roughly speaking, we should first

use the fact that in any spanning tree T the degree of v is at least 1. So, indeed P [X(δ(v)) = 2] ≥
Ber(1, 1). Furthermore, the minimizer of Ber(1, 1) is the poisson distribution of rate 1.

In the final example we show that the bound 1/e in the above example (that we did not prove

rigorously) is tight.

Example 2.9.18. Let G be a complete graph and let µ be a uniform spanning tree on G. By

symmetry, the expected degree of each vertex is 2(1−1/n). Next, we show that the degree distribution

of each vertex is essentially one plus a poisson distribution of rate 1 when n goes to infinity.

Using Prüfer code there is a one-to-one correspondence between the spanning trees of G and all

sequences of length n− 2 of vertices of V , where the degree of a vertex v in a tree T is the number

of occurrences of v in the corresponding sequence plus one. But the distribution of the number

of occurrences of v in a uniformly random sequence of length n − 2 of V is essentially a poisson

distribution. More precisely, the probability that v appears exactly once is(
n− 2

1

)
· 1

n
·
(

1− 1

n

)n−3

≈ (1− 1/n)n ≈ 1/e.

where the approximations become equality when n → ∞. So the degree of each vertex is 2 with

probability at most 1/e.
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New Machineries

3.1 Rounding by Sampling Method

In this section we describe the rounding by sampling method. We describe the approach by rounding

feasible solutions of an LP relaxation of TSP (see LP (2.4.1)). Let G = (V,E,x) be the underlying

graph of a feasible solution x of LP (2.4.1).

Let us first describe the result of applying the classical randomized rounding method of Raghavan

and Thompson [RT87]. In this method we construct a new H by independently rounding each edge

of the LP solution. More precisely, for each edge e include e in H with probability xe independent

of other edges. Let Xe be a random variable indicating that e ∈ H. The two main properties of the

independent randomized rounding are the following.

i) Any linear function of variables Xe’s will remain the same in expectation, i.e., for any f : E → R,

E

[∑
e∈E

f(e)Xe

]
=
∑
e∈E

f(e)xe.

For example, E [c(H)] = c(x).

ii) Since the variables Xe for e ∈ E are independent, we can use strong concentration bounds

such as Chernoff bounds to argue that any Lipschitz function of these indicator variables is

concentrated around its expected value.

However, this method does not preserve combinatorial properties of the LP solution. Although

G is fractionally 2-edge connected, H may be disconnected with high probability.

Let us provide a concrete example. Let G be a complete graph where xu,v = 2/(n − 1) and

c(u, v) = 1 for all u, v ∈ V . It is easy to see that, for each v ∈ V , the degree of v in H is zero with

63
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probability

(1− 2/(n− 1)n−1 ≈ exp(−2).

So, with high probability, H has n · exp(−2) degree zero vertices. So, not only is H disconnected, it

has Θ(n) many connected components.

Now, let us describe the rounding by sampling method. Our goal is to provide a rounding method

that preserves the underlying combinatorial structure of x while satisfying the two main properties of

the independent randomized rounding method as much as possible. The first observation is that we

can write x as a point in an integral polytope, in this case the spanning tree polytope. In Fact 2.4.1

we showed that for any feasible solution x of LP (2.4.1), the vector

z = (1− 1/n)x (3.1.1)

is in LP (2.4.3). Any feasible point of a polytope can be written as a convex combination of vertices

of that polytope (see Theorem 2.2.1). So, we can write z as a convex combination of vertices of

the spanning tree polytope. However, we know that the vertices of the spanning tree polytope are

integral spanning trees of our graph G. So, we can write,

z = α1T1 + . . .+ αkTk.

where T1, . . . , Tk are integral spanning trees of G. Any convex-combination defines a distribution.

Therefore, we can define a distribution µ, where PT∼µ [T = Ti] = αi. Now, we can round the solution

x simply by choosing a random spanning tree from µ. Observe that by definition µ preserves the

marginal probabilities imposed by z, PT∼µ [e ∈ T ] = ze. Therefore, the quantitative properties are

preserved in expectation: for any function f : V → R,

Pµ

[∑
e∈E

f(e)Xe

]
=
∑
e∈E

f(e)ze. (3.1.2)

For example,

E [c(T )] = c(z) = (1− 1/n)c(x).

Furthermore, unlike the independent randomized rounding method, the rounded solution is always

connected.

An, Kleinberg and Shmoys [AKS12] used the above simple idea to design an improved approx-

imation algorithm for the TSP path problem. The Algorithm 1 for the online stochastic matching

problem applies this idea to the matching polytope. Also, in a joint work with Laekhunakit and

Singh [LOS12], we use this idea to design an approximation algorithm for the minimum strongly

connected subgraph problem. Unfortunately, it turns out that this idea is not enough to break the

3/2 approximation algorithm of Christofides [Chr76] even on a Graphic metric. If we write the
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Figure 3.1.1: The left graph shows a feasible solution of LP (2.4.1) for an instance of Graphic TSP.
The solid edges have fraction 1 and the dashed edges have fraction 1/2, and the cost of each edge is
1. In the right we write the vector z = (1− 1/n)x as a convex combination of spanning trees. Note
that the cost of the minimum cost matching on the odd degree vertices of any of the spanning trees
in the support of the distribution is 7, approximately half of c(x).

fractional solution for the family graphs in the left graph of Figure 3.1.1 as a convex combination

of spanning trees as shown in the right, then as n goes to infinity, the cost of the minimum cost

perfect matching on the odd degree vertices of any spanning tree in the support of the distribution

converges to c(x)/2.

Let us give some intuitions for the above failure. Roughly speaking, the reason is that the simple

rounding by sampling method does not satisfy property (ii) of the independent randomized rounding

method. Using the Chernoff bound, one can show that, in a sample from the independent randomized

rounding method, the degree of every vertex is 2 with constant probability. On the other hand, since

we chose µ in the above argument arbitrarily, we don’t have any bound on the correlation between

different edges. Although the expected degree of every vertex in a sample tree is 2(1− 1/n), in the

above example, almost all vertices have odd degree with high probability. Therefore, the cost of the

minimum matching on the odd degree vertices of the tree is about n/2.

In summary, although the rounding by sampling method promises that the rounded solution

is connected, it may lose the parity of the degree of vertices or other structural properties of LP

solution. In the rest of this section we show that if we carefully choose the distribution µ, we

are guaranteed to preserve (ii) and indeed almost all advantages of the independent randomized

rounding method.

There are many ways to write a feasible point of a polytope as a convex combination of its ver-

tices. Our idea is to use a distribution that maximizes the randomness while preserving the marginal

probability of the edges. Roughly speaking, we don’t want to enforce any additional artificial struc-

ture when writing z as a convex combination of spanning trees. More formally, we write z as a

distribution of spanning trees that has the maximum possible entropy among all distributions that
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preserve marginal probability of edges. Asadpour and Saberi first studied and used the maximum

entropy rounding scheme for sampling a random matching in a bipartite graph with given marginal

probabilities [AS07, AS09].

3.1.1 Maximum Entropy Rounding by Sampling Method

Let T be the collection of all the spanning trees of G = (V,E). Recall that the entropy of a

probability distribution p : T → R+, is simply
∑
T∈T −p(T ) log(p(T )). The maximum entropy

distribution p∗(·) with respect to given marginal probabilities z is the optimum solution of the

following convex program (CP):

inf
∑
T∈T

p(T ) log p(T )

subject to
∑
T3e

p(T ) = ze ∀e ∈ E,

p(T ) ≥ 0 ∀T ∈ T .

(3.1.3)

The above convex program is feasible whenever z belongs to the spanning tree polytope P defined

on G = (V,E). As the objective function is bounded and the feasible region is compact (closed and

bounded), the infimum is attained and there exists an optimum solution p∗(·). Furthermore, since

the objective function is strictly convex, this maximum entropy distribution p∗(·) is unique.

The value p∗(T ) determines the probability of sampling any tree T in the maximum entropy

rounding scheme. Note that it is implicit in the constraints of this convex program that, for any

feasible solution p(.), we have
∑
T p(T ) = 1 since

n− 1 =
∑
e∈E

ze =
∑
e∈E

∑
T3e

p(T ) = (n− 1)
∑
T

p(T ).

Let OPTEnt denote the optimum value of convex program (3.1.3). Observe that if we remove

the equality constraint the optimum distribution of the above convex program is just the uniform

spanning tree distribution. Since any graph has at most nn−2 spanning trees [Cay89], OPTEnt always

satisfies

OPTEnt ≥ log(1/|T |) ≥ − log(nn−2) ≥ −n log n. (3.1.4)

We now want to show that, if we assume that the vector z is in the relative interior of the

spanning tree polytope of G then p∗(T ) > 0 for every T ∈ T and p∗(T ) admits a simple exponential

formula (see Theorem 3.1.1 below). Note that the vector z∗ obtained from the LP relaxation of the

ATSP indeed satisfies this assumption (see Fact 2.4.1).

For this purpose, we write the Lagrange dual to CP (3.1.3), see for example [Nem05]. For

every e ∈ E, we associate a Lagrange multiplier δe to the constraint corresponding to the marginal
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probability ze, and define the Lagrange function by

L(p, δ) =
∑
T∈T

p(T ) log p(T )−
∑
e∈E

δe

(∑
T3e

p(T )− ze

)
.

This can also be written as:

L(p, δ) =
∑
e∈E

δeze +
∑
T∈T

(
p(T ) log p(T )− p(T )

∑
e∈T

δe

)
.

The Lagrange dual to CP (3.1.3) is now

sup
δ

inf
p≥0

L(p, δ). (3.1.5)

The inner infimum in this dual is easy to solve. As the contributions of the p(T )’s are separable,

we have that, for every T ∈ T , p(T ) must minimize the convex function

p(T ) log p(T )− p(T )δ(T ),

where, as usual, δ(T ) =
∑
e∈T δe. Taking derivatives, we derive that

0 = 1 + log p(T )− δ(T ),

or

p(T ) = eδ(T )−1. (3.1.6)

Thus,

inf
p≥0

L(p, δ) =
∑
e∈E

δeze −
∑
T∈T

eδ(T )−1.

Using the change of variables γe = δe − 1
n−1 for e ∈ E, the Lagrange dual (3.1.5) can therefore be

rewritten as

sup
γ

[
1 +

∑
e∈E

zeγe −
∑
T∈T

eγ(T )

]
. (3.1.7)

Our assumption that the vector z is in the relative interior of the spanning tree polytope implies

that z can be expressed as a convex combination of all spanning trees in T such that the coefficient

corresponding to any spanning tree is positive. But this means that there is a point p(.) in the

relative interior of program (3.1.3). So, the convex program (3.1.3) satisfies the Slater’s condition.

This implies that the sup in (3.1.7) is attained by some vector γ∗, and the Lagrange dual value equals

the optimum value OPTEnt of our convex program (see Section 2.2 for background). Furthermore,

we have that the (unique) primal optimum solution p∗ and any dual optimum solution γ∗ must
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satisfy

L(p, γ∗) ≥ L(p∗, γ∗) ≥ L(p∗, γ), (3.1.8)

for any p ≥ 0 and any γ, where we have implicitly redefined L due to our change of variables from

δ to γ. Therefore, p∗ is the unique minimizer of L(p, γ∗) and from (3.1.6), we have that

p∗(T ) = eγ
∗(T ). (3.1.9)

Observe that the above distribution is indeed a λ-random spanning tree distribution for λe = eγ
∗
e

(see Section 2.8 for background). Summarizing, the following theorem holds.

Theorem 3.1.1. Given a vector z in the relative interior of the spanning tree polytope on G =

(V,E), there exist λe for all e ∈ E such that if we sample a spanning tree T of G according to

p∗(T ) :=
∏
e∈T λe then P [e ∈ T ] = ze for every e ∈ E.

It is worth noting that the requirement that z is in the relative interior of the spanning tree

polytope (as opposed to being just in this polytope) is necessary (the fact that being in the spanning

tree polytope was not sufficient had been observed before, see [LP13, Exercise 4.19]). Let G be a

triangle and z be the vector ( 1
2 ,

1
2 , 1). In this case, z is in the polytope (but not in its relative

interior) and there are no λ∗e’s that would satisfy the statement of the theorem (however, one can

get arbitrarily close to ze for all e ∈ E).

One we have a random spanning tree distribution we can use all properties of them that we

discussed in Section 2.8 and Section 2.9. For example, suppose z is a fractional spanning tree

obtained from a feasible solution of Held-Karp relaxation for TSP (2.4.1), and let λ : E → R+ be

the corresponding λ-random spanning tree distribution that preserves ze as the marginal probability

of any edge e. Since for any v ∈ V ,

E [|T ∩ δ(v)|] = 2(1− 1/n),

by Example 2.9.17 a constant fraction of the vertices of T have an even degree.

In the next example we describe a maximum entropy distribution of spanning trees for a given

marginal vector z.

Example 3.1.2. Consider the family of fractional spanning trees illustrated at the left of Figure 3.1.2

for a large n. The solid edges have fraction 1− 1/n and the dashed edges have fraction (1− 1/n)/2.

By symmetry, the weights λe of the solid edges are the same, and λe of the dashed edges are the

same. Let us normalize the weights such that λe = 1 for all dashed edges. Then, the weights of the

solid edges will be n− 1.5 (we verified numerically).

Note that each spanning tree has a non-zero probability. But, it turns out that with high probability

a random sample has a very nice shape. First, since the solid edges have a large weight, with high
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Figure 3.1.2: The left graph shows a fractional spanning tree obtained from a feasible solution of LP
(2.4.1), where the solid edges have fraction 1− 1/n, and the dashed edges have fraction (1− 1/n)/2.
In the maximum entropy distribution the λ value of the solid edges is about n times the dashed
edges. In the right we show a sample from the corresponding λ-random spanning tree distribution.

probability all of them (except possibly a constant number) will be in a random spanning tree. We

say two dashed edges are paired, if their endpoints are matched by two solid edges (a paired dashed

edges are shown in the left of Figure 3.1.2 inside a trapezoid). Let e, e′ be a paired dashed edges;

we show a random tree T has exactly one of them with high probability. Suppose the endpoints of

e, e′ are matched by the edges f, f ′. Since by the union bound f, f ′ ∈ T with probability 1−O(1/n)

the probability that both of e, e′ are in T is O(1/n). On the other hand, the probability that none of

e, e′ is in T is O(1/n), because any spanning tree contains at least one edge of each (except possibly

one) of the paired edges. So, with high probability T contains exactly one of e, e′. Furthermore, since

λe = λ′e, T will choose one of the uniformly at random. We shown a random spanning tree with

these properties at the right of Figure 3.1.2

Now suppose we have an instance of Graphic-TSP where c(e) = 1 for all edges of our graph. Re-

call that this graph is a tight example for Christofides’ algorithm, see Figure 2.5.3, and the rounding

by sampling method without exploiting the maximum entropy distribution also gives a 3/2 approxi-

mation, see Figure 3.1.1. It is an instructive exercise to show that the cost of the minimum perfect

matching on odd degree vertices of the a λ-random spanning tree is n/4 +O(1) with high probability.

So, maximum entropy rounding by sampling method has a 5/4-approximation ratio on this family of

instances.

As a final remark observe that one can study maximum entropy distributions of the convex hull

P of any set of discrete objects on a ground set of elements. Above analysis shows that the maximum

entropy distribution is always a production distribution, i.e., one can assign non-negative weights

to the elements of the ground set such that the probability of each of the objects in the maximum

entropy distribution preserving a given marginal vector in the interior of P is proportional to the

product of the weight of its elements. In order to use these distributions in computation first we need

to compute the weight of the ground elements and second we need to be able to sample efficiently from

the corresponding product distribution. Interestingly, very recently, Singh and Vishnoi [SV13] show



www.manaraa.com

CHAPTER 3. NEW MACHINERIES 70

that these two problems are equivalent (see more details in the next section). In Subsection 2.8.1

we showed how to efficiently sample from a λ-random distribution of spanning trees. In the next

section we design an efficient algorithm to approximately find the weight of the edges in the maximum

entropy distribution.

3.1.2 Computation of Maximum Entropy Distribution

In this part we design an algorithm to find a λ-random spanning tree distribution that preserves

the marginal probability of all the edges within multiplicative error of 1 + ε. Our algorithm runs in

time polynomial in n, 1/ε,− log zmin where zmin = mine∈E ze is the smallest non-zero value assigned

to the edges. Note that if z = (1 − 1/n)x for x being an extreme point solution of (2.4.1) then

zmin ≥ 2−n log(n).

Theorem 3.1.3. Given z in the relative interior of the spanning tree polytope of G = (V,E). For

any e−n
2/2 < ε ≤ 1/4, values γ̃e for all e ∈ E can be found, so that if we let λ̃e = exp(γ̃e) for all

e ∈ E, then the corresponding λ̃-random spanning tree distribution, µ̃, satisfies

∑
T∈T :T3e

Pµ̃ [T ] ≤ (1 + ε)ze, ∀e ∈ E,

i.e., the marginals are approximately preserved. Furthermore, the running time is polynomial in

n = |V |, − log zmin and log(1/ε).

Very recently, Singh and Vishnoi [SV13] generalized and improved the above theorem; they

show that for any family of discrete objects, M, and any given marginal probability vector in the

interior of the convex hull of M, one can efficiently compute the approximate weight of the ground

elements in the maximum entropy distribution if and only if there is an efficient algorithm that

approximates the weighted sum of all the objects for any given weights, i.e., an efficient algorithm

that approximates
∑
M∈M exp(γ(M)) for any vector γ. For example, since there is an efficient

algorithm that approximates the weighted sum of all perfect matchings a bipartite graph with respect

to given weights γ, [JSV04], one can approximately compute the maximum entropy distribution of

the perfect matchings of any bipartite graph with respect to any given marginals in the interior of

the perfect matching polytope (see [SV13] for more details).

In the rest of this section we prove the above theorem. We will use the Ellipsoid method,

Theorem 2.2.2, so we just need to provide a separating hyperplane oracle, a polynomial in n bound

on the radius of a ball that contains our polytope, and an inversely polynomial in n bound on

the radius of a ball in the interior of our polytope. In [AGM+10] we also provide a combinatorial

algorithm to approximate the maximum entropy distribution that we do not include in this thesis;

we refer the interested reader to [AGM+10].

First, we show that the optimum value of the following convex program is the same as the
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optimum value of the original dual program (3.1.7).

sup
γ

∑
e

zeγe,

subject to
∑
T3e

eγ(T ) ≤ ze ∀e ∈ E
(3.1.10)

This is because on one hand for any vector γ that is a feasible solution of above program,

1+
∑
e∈E

zeγe−
∑
T∈T

eγ(T ) = 1+
∑
e∈E

zeγe−
1

n− 1

∑
e∈E

∑
T3e

eγ(T ) ≥ 1+
∑
e∈E

zeγe−
1

n− 1

∑
e∈E

ze =
∑
e∈E

zeγe,

where the last equation holds since z is a fractional spanning tree. So the optimum of CP (3.1.10)

is at most the optimum of CP (3.1.7). On the other hand, since z is in the interior of spanning

tree polytope, there is a unique optimum γ∗ to CP (3.1.7) that satisfies (3.1.8), so for all e ∈ E,∑
T3e exp(γ∗(T )) =

∑
T3e p

∗(T ) = ze, and γ∗ is a feasible solution of (3.1.10). Furthermore,

1 +
∑
e∈E

zeγ
∗
e −

∑
T∈T

exp(γ∗(T )) = 1 +
∑
e∈E

zeγ
∗
e −

∑
T∈T

p∗(T ) =
∑
e∈E

γ∗eze.

Therefore, the optimum of (3.1.7) is at most the optimum of (3.1.10). Therefore, they are equal,

and the optimum of (3.1.10) is OPTEnt.

Next, we use the ellipsoid method, Theorem 2.2.2, to find a near optimal solution of CP (3.1.10).

The main difficulty is that the coordinates of the optimizers of CP (3.1.10) are not necessarily

bounded by a function of n. First, we simply turn the optimization problem into a feasibility

problem by doing a binary search on the value of the optimum, so suppose we guess the optimum

is t. Now, instead of proving that every feasible solution of CP (3.1.10) that satisfies
∑
e zeγe ≥ t

falls in a ball of radius that is a polynomial function of n, we restrict the set of feasible solutions of

(3.1.10) to the vectors whose coordinates are bounded by a polynomial function of n. Furthermore,

to ensure that the new polytope has a non-empty interior, we relax the RHS of the constraint∑
T3e exp(γ(T )) ≤ ze. More precisely, for any α > 0,M > 0 and t ∈ R, let F(α, t,M) be the

following feasibility convex program∑
e

zeγe ≥ t,∑
T3e

eγ(T ) ≤ (1 + α)ze ∀e ∈ E,

−M ≤ γe ≤M ∀e ∈ E.

(3.1.11)

The following lemma relates the above CP to CP (3.1.10).

Lemma 3.1.4. For any t ≤ OPTEnt, F(e−n
2/2, t, n4 − n2 log zmin) is non-empty.
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Proof. We say that a vector γ : E → R has a gap at an edge f ∈ E if for any e ∈ E, either γe ≤ γf
or γe > γf + gap where gap := n2 − log zmin. Observe that for any γ : E → R, the number of gaps

of γ is at most |E| ≤
(
n
2

)
.

In the following claim we show that if γ has a gap at an edge e then we can construct another

vector γ̃ with fewer number of gaps while losing a small amount in the value of the objective function.

Claim 3.1.5. Let γ : E → R that has at least one gap. Let Tmax be a maximum spanning tree of

G with respect to weights γ, i.e., Tmax = argmaxT γ(T ). There exists γ̃ : E → R with at least one

fewer gap such that for any e ∈ E,

∑
T3e

eγ̃(T ) ≤
∑
T3e

eγ(T ) + nn−2e−γ(Tmax)−gap. (3.1.12)

and ∑
e

zeγ̃e ≥
∑
e

zeγe. (3.1.13)

Proof. Suppose that γ has a gap at an edge e∗ ∈ E. Let F := {e ∈ E : γe > γe∗}. Let k = rank(F )

be the size of the maximum spanning forest of F (see Section 2.3 for background). Recall that by

definition any spanning tree of G has at most k edges from F , so z(F ) ≤ k. We reduce the γe for all

e ∈ F and increase it for the rest of the edges. In particular,

γ̃e =

γe + k∆
n−1 if e /∈ F ,

γe −∆ + k∆
n−1 if e ∈ F ,

where ∆ = mine∈F γe − γe∗ − gap. Note that by the assumption of the claim ∆ > 0. By above

definition, γ̃ does not have a gap at e∗, and for any edge e 6= e∗, γ̃ has a gap at e if γ has a gap at e.

First, observe that,

∑
e

zeγ̃e =
∑
e

zeγe +
k∆

n− 1

∑
e

ze − z(F )∆ ≥
∑
e

zeγe + k∆− k∆ =
∑
e

zeγe.

where we used z(F ) ≤ k. This proves (3.1.13).

It remains to prove (3.1.12). If a spanning tree T has exactly k edges from F , then γ̃(T ) = γ(T ),

and exp(γ̃(T )) = exp(γ(T )). By Lemma 2.3.1 any maximum weight spanning tree of (V,E, γ) or

(V,E, γ̃) has exactly k edges of F . Since γ̃(T ) = γ(T ) for any tree where |T ∩F | = k, the maximum

spanning trees of (V,E, γ) are the same as the maximum spanning trees of (V,E, γ̃). So, Tmax is

also a maximum weight spanning tree of (V,E, γ̃).

Now, suppose a spanning tree T has less than k edges in F . Since |T ∩ F | < k, there exists an

edge f ∈ (Tmax ∩ F )− T such that (T ∩ F ) ∪ {f} is a forest of G. Therefore, the unique circuit in
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T ∪{f} contains an edge e /∈ F . Thus T ′ = T ∪{f}−{e} is a spanning tree. By the definition of γ′,

γ̃(Tmax) ≥ γ̃(T ′) = γ̃(T )− γ̃e + γ̃f > γ̃(T ) + gap, (3.1.14)

which yields the desired inequality. Therefore, for any tree T ,

eγ̃(T ) ≤ eγ(T ) + eγ̃(Tmax)−gap = eγ(T ) + eγ(Tmax)−gap,

where the last equality follows by the fact that |Tmax ∩ F | = k. Now, (3.1.12) follows by the fact

that any graph at most nn−2 spanning trees [Cay89].

Let γ∗ be an optimum solution of CP (3.1.10). If γ∗ does not have any gap we let γ̃ = γ∗.

Otherwise, we repeatedly apply the above claim and remove all of the gaps and find a vector γ̃ such

that
∑
e zeγ̃e ≥

∑
e zeγe, and for any edge e ∈ E,

∑
T3e

eγ̃(T ) ≤
∑
T3e

eγ
∗(T ) + |E|nn−2eγ

∗(Tmax)−gap ≤ ze + nne−n
2

zmin ≤ (1 + n−n
2/2)ze. (3.1.15)

where the first inequality follows by the fact that γ∗ has at most |E| gaps, the second inequality

follows by the feasibility of γ∗ in CP (3.1.10) and that eγ
∗(Tmax) ≤ maxe ze ≤ 1.

Since γ̃ does not have any gap

max
e
γ̃e −min

e
γ̃e ≤ |E| · gap.

So, it is sufficient to lower bound maxe γ̃e and upper bound mine γ̃e. Let f = argmaxe γ̃e. By (3.1.4),

−n log n ≤ OPTEnt =
∑
e

zeγ
∗
e ≤

∑
e

zeγ̃e ≤ n ·max
e
γ̃e.

On the other hand, by (3.1.15), eγ̃(T ) ≤ 2 for any tree T , so mine γ̃e ≤ 1. Therefore,

max
e
γ̃e ≤ min

e
γ̃e + |E| · gap ≤ 1 + |E| · gap ≤ n4 − n2 log zmin,

min
e
γ̃e ≥ max

e
γ̃e − |E| · gap ≥ − log(n)− |E| · gap ≥ −n4 + n2 log zmin.

This completes the proof of Lemma 3.1.4.

In Algorithm 5 we provide a separating hyperplane oracle for CP (3.1.11). Note that all the steps

of the algorithm can be done in polynomial time. The only one which may need some explanation

is computing qê(γ) for some edge e and its gradient.

qe(γ) = eγe
∑
T3e

eγ(T−{e}) and
∂qe(γ)

∂γe′
= eγe+γe′

∑
T3e,e′

eγ(T−{e,e′}).
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Algorithm 5 Separating hyperplane oracle for CP (3.1.11)

Input: γ ∈ R|E|
if γ violates any of the linear constraints then

Return the violated inequality as a separating hyperplane.
else

Compute qe(γ) =
∑
T3e e

γ(T ) for every e.
if qe(γ) ≤ (1 + α)ze for all edges e then

report γ ∈ F(α, t,M).
else

Let ê be an edge for which the constraint is violated. Compute the gradient of qê(γ).
Return the hyperplane {(γ′ − γ).∇qê(γ) > 0, γ′ ∈ R|E|} as a violated constraint.

end if
end if

Both of the above expressions can be computed efficiently by the matrix tree theorem (see Theo-

rem 2.8.1).

Now, we are ready to prove Theorem 3.1.3.

Proof of Theorem 3.1.3. Let α = ε/6. By Lemma 3.1.4, F(α,OPTEnt,M) where M = n4 −
n2 log zmin is non-empty. Let γ∗ be a point in F(α,OPTEnt,M) and let B = {γ : ‖γ − γ∗‖∞ ≤ β},
where β = ε/4n. For any γ ∈ B,

∑
e

zeγe ≥
∑
e

ze(γ
∗
e − β) ≥ OPTEnt − nβ = OPTEnt − ε/4.

Also, for any edge e ∈ E,

∑
T3e

eγ(T ) ≤
∑
T3e

eγ
∗(T )+nβ ≤ enβ(1 + α)ze ≤ (1 + ε/2)ze.

where the last inequality follows by the assumption ε < 1/4.

So B ⊆ F(ε/2,OPTEnt− ε/4,M +β). Therefore, F(ε/2,OPTEnt− ε/4,M + 1) is non-empty and

contains a ball of radius β = ε/4n and is contained in a ball of radius |E| · n which is a polynomial

function of n, − log zmin and 1/ε. Using binary search on t and the ellipsoid method, we can find a

point γ in F(ε/2,OPTEnt − ε/4,M + 1) in time polynomial in n, − log zmin, and log 1/ε.

Since γ is a feasible solution of of the CP, (3.1.7). 1 +
∑
e zeγe −

∑
T e

γ(T ) ≤ OPTEnt. On the

other hand, since γ ∈ F(ε/2,OPTEnt − ε/4,M + 1),

∑
e

zeγe ≥ OPTCP − ε/4.

These two imply that ∑
T

eγ(T ) ≥ 1− ε/3.
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The last step is to normalize γe’s. Define γ̃(e) = γ(e)− log
∑
T e

γ(T )

n−1 . By definition,
∑
T e

γ̃(T ) = 1.

So, for any edge e ∈ E,

∑
T3e

eγ̃(T ) =

∑
T3e e

γ(T )∑
T e

γ(T )
≤ (1 + ε/2)ze

1− OPTEnt +
∑
e zeγe

≤ (1 + ε/2)ze
1− ε/4

≤ (1 + ε)ze.

where the first inequality follows by the fact that the optimum of (3.1.10) is OPTEnt and γ is a

feasible point of that program.

3.1.3 Other Methods for Rounding with Negative Correlation Property

Since the appearance of our works, other ways of producing negatively correlated probability distri-

butions on trees (or, more generally, matroid bases) satisfying some given marginals z have been

proposed [CVZ10]. Chekuri, Vondrak and Zenklusen [CVZ10] proposed a randomized variant of

pipage rounding method [CCPV07], and a new randomized selection method, called swap rounding,

which is based on the basis exchange property of matroid bases. Since these approaches preserve

negative correlation, they satisfy Chernoff types of bound that we discussed in Subsection 2.8.3.

The distributions produced by pipage rounding or swap rounding methods are not necessarily a

λ-random spanning tree distribution. In fact, we are not aware of any closed form description of these

distributions. So, these distributions do not fit in the class of strongly Rayleigh probability measures,

and they do not necessarily satisfy their properties. In general, these distributions satisfy weaker

form of negative dependence compared to the maximum entropy rounding by sampling method, but

the corresponding sampling algorithm is faster. Furthermore, both of the pipage rounding and swap

rounding methods can be applied to any matroid polytope, but, as we discussed in Subsection 3.1.2,

the maximum entropy rounding by sampling method can only be applied to polytopes that has an

efficient exact or approximate counting algorithm [SV13].

It turns out that the analysis of our new approximation algorithm for ATSP (see Chapter 4)

works with any distribution of spanning trees that satisfies Chernoff types of bounds on cuts and

(approximately) preserves the vector z as the marginal probability of the edges. But, the analysis of

our approximation algorithm for Symmetric TSP (see Chapter 6) uses several properties of strongly

Rayleigh measures and λ-random spanning tree distributions that are stronger than the negative

correlation property (e.g., the negative association property defined in Definition 2.9.6). Therefore,

we can use either of pipage rounding method, or randomized swap rounding method in place of

maximum entropy rounding by sampling method in Algorithm 6 and prove the same approximation

factor of O(log n/ log log n) for ATSP. But, we are not aware of any analysis of an algorithm for

STSP that uses pipage rounding instead of maximum entropy distributions.
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3.2 The Cactus-like Structure of Near Minimum Cuts

Let G = (V,E) be an unweighted ∆-edge connected graph. In this section we prove new properties

of (1+η) near minimum cuts for small but constant values of η. Then, in Subsection 3.2.2 we discuss

applications to the instances of traveling salesman problem.

Our main result in this section is a generalization of Lemma 2.6.6 to the structure of near

minimum cuts in an approximate sense (see Theorem 3.2.5 below). Roughly speaking, we show that

for a sufficiently small η, for any cut class C of (1 + η) near minimum cuts, G(ψ(C)) is very close to

a cycle. In particular, we can find |V |(1 − ε) pair of vertices such that there are ∆(1 − ε′) parallel

edges between each pair where ε, ε′ are functions of η and do not depend on |V |. In some sense, our

theorem adds a characterization of the placement of the edges between the atoms to the polygon

representation, when η is sufficiently small.

Before getting into our main theorem we provide a simple proposition that shows a direct gener-

alization of the argument in the proof of Lemma 2.6.6 only works for cut classes with “small” number

of atoms. As it will be clear later, the argument for “large” cut classes is much more complicated

and requires many properties of the polygon representation discussed in Section 2.7.

Proposition 3.2.1. Let F be the collection of (1 + η) near minimum cuts of graph G. For any

proper cut class C the contracted graph H = G(ψ(C)) satisfy the following properties.

1. For any vertex u ∈ V (H), we have |δ(u)| ≤ ∆(1 + η(|V (H)| − 2)),

2. For any vertex u ∈ V (H) there are two distinct vertices v, w ∈ V (H) such that

|E(u, v)|, |E(u,w)| ≥ ∆

2
(1− η(|V (H)| − 3)).

where by E(u, v) we mean the set of edges between the atoms corresponding to u and v in G.

Proof. A set A ⊆ V (H) is tight if (A,A) is a near minimum cut. Also, A is a non-trivial subset if

|A| ≥ 2.

Claim 3.2.2. Any non-trivial set A containing a vertex u includes a two element set A∗ containing

u such that

|δ(A∗)| ≤ |δ(A)|+ η(|A| − 2)∆.

Proof. We prove by induction. If |A| = 2 then we are already done. So assume |A| ≥ 3, and let

A′ = A− {u}. Since A′ is non-trivial, by Fact 2.6.7 there is a tight set B containing u that crosses

A′. Now, either B ⊂ A, or B crosses A. In either case B or B ∩ A gives a smaller non-trivial set

that contains u. Furthermore, since B is a tight set, and |δ(A)| ≥ ∆,

|δ(B)| ≤ (1 + η)∆ ≤ |δ(A)|+ η∆.
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Also, by Lemma 2.7.1 |δ(B ∩ A)| ≤ |δ(A)| + η∆. So, by the induction hypthesis there is a two

element set A∗ containing u and

δ(A∗) ≤ max{|δ(A ∩B)|, |δ(B)|}+ η(max{|A ∩B|, |B|} − 2)∆ ≤ δ(A) + η∆ + η(|A| − 3)∆

= |δ(A)|+ η(|A| − 2)∆,

and we are done.

For any vertex u ∈ V (H), let (A,A) be a near minimum cut and let u ∈ A. Then, by the above

claim there is A∗ of size 2 such that u ∈ A∗ and

|δ(A∗)| ≤ |δ(A)|+ η(|A| − 2)∆ ≤ (1 + η)∆ + η(|V (H)| − 4)∆ ≤ ∆(1 + η(|V (H)| − 3)).

where we used the fact that C is a proper cut class in showing |A| ≤ |V (H)| − 2. Since A∗ is a

non-trivial set there is a tight set B crossing A. By Lemma 2.7.1,

|δ(u)| = |δ(A∗ ∩B)| ≤ |δ(A∗)|+ η∆ ≤ ∆(1 + η(|V (H)| − 2)).

This proves the first conclusion.

Let A∗ = {u, v}. Applying above claim to B gives a two element set B∗ = {u,w} such that

similar to A∗, |δ(B∗)| ≤ ∆(1 + η(|V | − 3)). But since B∗ ⊆ B, v 6= w. So, |E(u, v)|, |E(u,w)| ≥
(1− η(|V (H)| − 3))∆

2 .

Observe that if |ψ(C)| � 1/η, then we can arrange the vertices of H around a cycle such that almost

all edges adjacent to each vertex go to its neighbors in the cycle. This is made rigorous in the

following corollary.

Corollary 3.2.3. Let F be the collection of 1 + η-near minimum cuts of G for η < 1/16. For any

proper cut class C such that 2|ψ(C)| ≤ 1/η,

1. The polygon representation of C does not have any inside atoms.

2. For any two consecutive outside atoms in polygon representation, A,B, |E(A,B)| ≥ ∆/2(1−
η(|ψ(C)| − 3)).

Proof. The proof of first conclusion uses Lemma 3.2.15 that we prove later in this section. It follows

from Lemma 3.2.15 that if C has an inside atom, then there is an inside atom A that has at most

4η∆ edges to all other inside atoms. On the other hand, by Claim 3.2.17 for any outside atom B,

|E(A,B)| ≤ 2η∆. Since 2|ψ(C)| ≤ 1/η,

∆

2
(1− η|ψ(C)|) ≥ ∆/4 > 4η∆
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So, A does not satisfy the second conclusion of Proposition 3.2.1 and it cannot be an atom of C.
It remains to prove the second conclusion. It is easy to see that the same inductive argument of

Claim 3.2.2 shows that each atom of ψ(C) has ∆/2(1−η(|ψ(C)|−3)) to its neighboring atoms in the

polygon representation. It is sufficient to strengthen the inductive hypothesis and assume that the

non-trivial set A corresponds to a diagonal (not necessarily a representing diagonal) of the polygon

representation.

If |ψ(C)| > 1/η, then the above proposition does not say anything about the structure of edges

in G(ψ(C)). So, in the rest of this section our main concern are “large” cut classes.

Before describing our main theorem we first need to define cactaceous structures as a cycle-like

structure for “large” cut classes.

Definition 3.2.4 ((α, α′, β)-cactaceous). A ∆-edge connected graph G = (V,E) is (α, α′, β)-cactaceous

if for some η ≥ 0:

i) There exists at least m := (1−α√η)|V | pairs of vertices of G, {{v1, u1}, {v2, u2}, . . . , {vm, um}}
such that for each 1 ≤ i ≤ m, |E(vi, ui)| ≥ ∆

2 (1−α′√η), and each vertex v ∈ V is contained in

at most two such pairs.

ii)
∆

2
|V | ≤ |E| ≤ (1 + βη)

∆

2
|V |.

Our main theorem in this section shows that any cut class of a collection of near minimum cuts

is cactaceous.

Theorem 3.2.5. For any η < 1/100 and any cut class C of (1 + η) near minimum cuts of G,

G(ψ(C)) is (14, 3, 3)-cactaceous.

Observe that if we let η = 0 in the above theorem, then we obtain Lemma 2.6.6. So, above

theorem can be seen as a generalization of Lemma 2.6.6 to the system near minimum cuts. We just

need to prove the above theorem for a fixed cut class C of G. So, for the sake of brevity, we work

with G(ψ(C)), and we prove the following equivalent statement.

Theorem 3.2.6. Let G = (V,E) be a ∆-edge connected graph, and η < 1/100 such that any S ⊆ V
of size |S| ≥ 2 is crossed by a (1+η) near minimum cut, and the cross graph of the (1+η) non-trivial

near minimum cuts of G is connected. Then G is (14, 3, 3)-cactaceous.

Observe that the two properties of graph G in above theorem follows from Fact 2.6.7 and

Lemma 2.6.3. Unless otherwise specified, throughout this section by a near minimum cut we mean

a (1 + η)-near minimum cut.

We start by proving that G satisfies (ii) property of cactaceous structures for β = 3. Since G is

∆-edge connected, the degree each vertex is at least ∆. Therefore, it is sufficient to show that the

average degree of vertices of G is significantly larger than ∆.
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Unfortunately, there are examples where some vertices of G have very large degrees. For example,

consider the wheel graph in Figure 2.7.8, and observe that this graph satisfies the assumption of

Theorem 3.2.6. Now, we can increase the number of vertices in the surrounding cycle, this increases

the degree of vertex 1 linearly with n. So, although the average degree of the vertices is only 8, G

has a vertex of degree n.

The above example shows that maximum degree of G is unbounded, so we prove (ii) property

by upper bounding the average degree of vertices.

Lemma 3.2.7. The average degree of the vertices of G is at most (1 + 3η) ·∆.

Proof. We run the following procedure, and we incrementally construct a partitioning of V .

Let (A,A) be a near minimum cut of G.
We maintain a partition P of vertices of V .
Initialize P = {A,A}.
while there is S ∈ P s.t. |S| ≥ 2 do

Find a minimum cut (T, S − T ) of the induced subgraph G[S].
Substitute T with B and S − T .

end while

Observe that each edge {u, v} ∈ E is inside exactly one of the cuts (T, S − T ) considered in

above procedure. Therefore, if we show that the size of each cut |E(T, S − T )| ≤ (1 + 3η)∆
2 , then

the average degree of the vertices of G is at most:

|E|
|V |
≤ |E(A,A)|

|V |
+
|V | − 2

|V |
(1 + 3η)

∆

2
≤ (1 + 3η)

∆

2
,

and we done.

We say a near minimum cut (B,B) is outside of a set S ⊆ V , if either S ⊆ B, or S ⊆ B or B

crosses S. In Claim 3.2.8 we show that that if a set S ⊂ V satisfies

min
T⊂S
|E(T, S − T )| > (1 + 3η)

∆

2
,

then any near minimum cut (B,B) of G that is outside of S, crosses S. But, all S considered

throughout the procedure are either a subset of A, or A, so (A,A) is outside of any such set S.

Therefore, the size of the minimum cut of of induced subgraph G[S] is at most (1 + 3η)∆
2 , and we

are done.

Claim 3.2.8. Let (S, S) is a non-trivial cut in G. If for any set T ⊂ S,

|E(T, S − T )| > (1 + 3η)
∆

2
,

then any near minimum cut of G that is outside of S, crosses S.
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B

S

A

Figure 3.2.3: Setting in the proof of Lemma 3.2.7.

Proof. We prove by contradiction. Suppose there exists a near minimum cut outside of S, and not

crossing S. On the other hand, since (S, S) is a non-trivial cut of G, there exists a near minimum

cut crossing (S, S). But, since the set of near minimum cuts of G are connected, there is a path of

crossing cuts which connects these two cuts. So, without loss of generality, we can assume there are

two crossing near minimum cuts (A,A) and (B,B) such that A is outside of S and B crosses S (see

Figure 3.2.3).

Since B crosses S, by Claim’s assumption we have |E(Bl∩S,Bl∩S)| > (1 + 3η)∆
2 . On the other

hand, since (B,B) crosses (A,A) by Lemma 2.7.2 we have |E(Bl ∩ Bl−1, Bl ∩ Bl−1)| ≥ (1 − η)∆
2 .

Therefore:

|E(B,B)| ≥ |E(B ∩ S,B ∩ S)|+ |E(B ∩A,B ∩A)|

> (1 + 3η)
∆

2
+ (1− η)

∆

2
= (1 + η)∆,

where the first inequality holds by the fact that A∩S = ∅. Therefore, (B,B) is not a near minimum

cut of G which is a contradiction.

This completes the proof of Lemma 3.2.7.

It remains to prove G satisfies the (i) property of the cactaceous structures for α = 20, α′ = 4.

This is the most technical part of the proof of Theorem 3.2.6. We start by proving the (i) property

holds in the special case where the polygon representation does not have any inside atoms. Then,

in Subsection 3.2.1 we extend the proof to the general case where inside atoms are allowed. So for

now, we may assume that we have a (regular) convex |V |-gon, such that each vertex of G is mapped

to a distinguished edge of the polygon, and the diagonals represent the near minimum cuts (see

Section 2.7 for background on the polygon representation).

Lemma 3.2.9. Suppose that the polygon representation of G does not have any inside atoms.

Then, for any integer s ≥ 12, there exists at least m = (1 − 8
s−10 )|V | pairs of vertices of G,

{{v1, u1}, {v2, u2}, . . . , {vm, um}} such that for each 1 ≤ i ≤ m, |E(vi, ui)| ≥ (1 − sη)∆
2 , and each

vertex v ∈ V is contained in at most two such pairs.
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Proof. Let n := |V |, and let us label the points of the polygon representation cyclically (in a clockwise

order) as p1, p2, . . . , pn. Moreover, assume that the n vertices v1, v2, . . . , vn of G are placed on the

edges of the polygon such that vi is placed on the edge (pi, pi+1) (note that by pi+1 we mean the

point next to pi in the cyclic ordering). We show that there is a set S∗ of vertices of G such that

|S∗| ≥ (1− 8
s−10 )n such that for any vi ∈ S∗, we have |E(vi, vi+1)| ≥ (1− sη)∆

2 . Observe that the

lemma follows from the existence of S∗. Since G is ∆-edge connected, if |δ({vi, vi+1})| ≤ (1 + sη)∆,

then |E(vi, vi+1)| ≥ (1 − sη)∆
2 . So, equivalently, we can show there is a set S∗ ⊆ V such that

|S∗| ≥ (1− 8
s−10 )n and for any vi ∈ S∗ |δ({vi, vi+1})| ≤ (1 + sη)∆.

Before defining the set S∗, we need to define some notations. Since each near minimum cut of

G is corresponding to a representing diagonal (and a consecutive sequence of vertices), we will use

intervals to represent (near minimum) cuts. For any two points pi and pj let

[pi, pj ] := {pi, pi+1, . . . , pj},

[pi, pj) := {pi, pi+2, . . . , pj−1}.

Note that [pi, pj ] ∪ [pj , pi] is all of the points of the polygon. Also, let

C(pi, pj) := δ({vi, vi+1, . . . , vj−1}).

be the cut corresponding to an interval of the points of the polygon. We say two intervals cross,

if their corresponding cuts cross. For example, the intervals [pi, pi+2] and [pi+2, pi+4] do not cross,

while [pi, pi+2] and [pi+1, pi+3] cross each other (assuming n ≥ 4). We say an interval [pi′ , pj′ ] is a

subinterval of [pi, pj ] if the set of polygon vertices contained in [pi′ , pj′ ] is a subset of [pi, pj ]. For

example, [p2, p4] is a subinterval of [p1, p5], but [p4, p2] is not a subinterval of [p1, p5].

For each point pi, let qi be the nearest point to pi (in terms of the cyclic distance), such that

C(pi, qi) is a near minimum cut (note that since there is a near minimum cut crossing C(pi−1, pi+1),

each vertex pi is adjacent to at least one representing diagonal). Since we only consider the non-

trivial near minimum cuts of G, qi 6= pi+1 and qi 6= pi−1.

For any point pi of the polygon, we define a chain as a sequence of points qi0 , qi1 , qi2 , . . . , qil

satisfying the following properties:

1. qi0 = qi,

2. qil = pi+2,

3. for all j ≥ 1, we have qij ∈ [pi+2, qij−1
); and

4. for all j ≥ 1, there exists a point rj such that the cut C(qij , rj) is a near-minimum cut, and it

crosses the cut C(pi, qij−1).



www.manaraa.com

CHAPTER 3. NEW MACHINERIES 82

See Figure 3.2.4 for an example of a chain. The length of a chain is the number of its points. In the

next claim we show that every point pi has at least one chain.

pi

pi+1

pi+2

qi0

qi1
qi2

r1

r2

r3

Figure 3.2.4: An example of a chain of length 4 with vertices qi0 , qi1 , qi2 , pi+2 for a vertex pi. The
blue edges are the representing diagonals in the polygon representation

Claim 3.2.10. Any point pi satisfy the following properties.

1) There exists at least one chain for pi.

2) If there is a chain of length l for pi, then |δ({vi, vi+1})| ≤ (1 + η · l)∆.

3) Let Pi := {qi0 , qi1 , . . . , qil} be a chain for vertex pi, and let C(pa, pb) be a near minimum cut

such that pa ∈ [pi+2, qi), and more than two vertices of Pi are contained in the interval [pa, pb).

If C(pa, pb) crosses C(pi, qi), or [pa, pb] is a subinterval of [pi, qi], then there is a shorter chain

for pi.

Proof. We start by proving the first property. We construct the chain inductively starting with

qi0 := qi. Each time we add a new vertex qij that is closer to pi compared to qij−1 such that there is

a near minimum cut C(qij , rj) that crosses C(pi, qij−1). Since qij−1 ∈ [pi+3, qi] (i.e., the chain is not

completed yet), C(pi+1, qij−1
) is a non-trivial cut, and by the assumptions of Theorem 3.2.6, there

exists a near minimum C(pa, pb) crossing it. Assume (perhaps after renaming) that pa ∈ [pi+2, qij−1
).

On the other hand, since qi is the closest vertex to pi, b 6= i. Therefore, C(pa, pb) crosses C(pi, qij−1).

and we can simply set qij := pa. This completes the proof of conclusion (1). It is instructive to

compare this proof with the simple proof of Proposition 3.2.1.
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For the second conclusion we use a simple induction to show that |C(pi, qij )| ≤ ∆ + (j + 1)η∆.

Then for j = l − 1 we get |C(pi, pi+2)| = |C(pi, qil−1
)| ≤ ∆ + lη∆ which implies conclusion (2). For

j = 0 we have |C(pi, qi0)| = |C(pi, qi)| ≤ (1 + η)∆. On the other hand, by Lemma 2.7.1,

|C(pi, qij+1)| ≤ |C(pi, qij )|+ η∆ ≤ ∆ + (j + 1)η + η∆ = ∆ + (j + 2)η∆,

where the last inequality holds by the induction hypothesis. This completes the proof of conclusion

(2).

To prove the last property, it suffices to construct a shorter chain for pi using the near minimum

cut C(pa, pb). Let qic , qid be the first, and the last points of the chain that are contained in [pa, pb).

Since either C(pa, pb) crosses C(pi, qi) or [pa, pb] is a subinterval of [pi, qi], qic , qid are well-defined.

By claim’s assumptions we have d ≥ c+ 2.

Let P ′i := {qi0 , qi1 , . . . , qic , pa, qid+1, . . . , qil}. Since d ≥ c+ 2, the length of P ′i is smaller than Pi.

So, it remains to show P ′i is indeed a chain for pi. Suppose C(qid+1
, p) is a near minimum cut that

crosses C(pi, qid) where p is a point of the polygon (note that this cut exists since Pi is a chain). We

need to show that C(pa, pb) crosses C(pi, qic), and C(qid+1
, p) crosses C(pi, pa). The latter follows

from pa ∈ (qid+1
, qid ].

It remains to prove C(pa, pb) crosses C(pi, qic). If C(pa, pb) crosses C(pi, qi), then we have

qic = q0. Therefore, C(pa, pb] crosses [pi, qic), and we are done. Otherwise, by claim’s assumption,

[pa, pb] is a subinterval of [pi, qi]. Then, since qic ∈ [pa, pb), C(pa, pb) crosses C(pi, qic), and we are

done. This completes the proof of conclusion (3).

For any vertex pi, let Pi be its shortest length chain. Now we are ready to define the set S∗. We

define

S∗ := {vi : len(Pi) ≤ s}

to be the set of vertices vi such that the length Pi is at most s.

By property 2 of the above claim, if length of Pi is at most s, then we have |δ({vi, vi+1})| ≤
(1 + sη)∆. It remains to prove that |S∗| ≥ (1 − 8

s−10 )n. We say a point pi is bad if len(Pi) > s

(i.e., vi /∈ S∗). In the next lemma we show that the number of bad vertices is at most 8
s−10n. This

completes the proof of Lemma 3.2.9.

Lemma 3.2.11. The number of bad vertices is at most 8
s−10n.

Proof. We prove this claim by a double counting argument. Consider a graph D, with n vertices

one for each point of the polygon and β additional “bad” vertices one for each interval [pi, qi]

corresponding to a bad point pi. We construct a directed acyclic graph (DAG) by adding directed

edges from the bad vertices to the rest (we allow directed edges between the bad vertices too). We

will show that the in-degree of each vertex is at most 4, while the out-degree of each bad vertex is

at least s−2
2 . The lemma follows by noting that the sum of the in-degrees is equal to the sum of the
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out-degrees, thus:

4(n+ β) ≥ β s− 2

2
⇒ β ≤ 8

s− 10
n.

The construction of the graph D is quite intricate and we will do it in several steps. We say a

point pj is a potential child of [pi, qi] iff pj ∈ [pi+2, qi). We say an interval [pj , qj ] is a potential child

of [pi, qi] iff it is a subinterval of [pi, qi] and both of its endpoints are potential children of [pi, qi].

The directed edges of D are from a bad vertex to a subset of the potential children of its interval.

Since the edges are directed only from an interval to the intervals/vertices inside it, D will be a

directed acyclic graph.

We add the directed edges inductively in a bottom up manner. Consider an interval [pi, qi] and

suppose we have added the edges between the potential children of [pi, qi], such that the outdegree

of all intervals is at least s−2
2 .

Let Di be the induced subgraph of the set of potential children of [pi, qi]. We show that Di

contains at least (s− 2)/2 sources (vertices of in-degree 0). Then we connect [pi, qi] to some specific

set of the sources of Di.

Let Pi = qi0 , qi1 , . . . , qil be the shortest chain assigned to a bad point pi. Since pi is a bad point

we have l ≥ s. Let s′ be the largest odd integer smaller than s (i.e., s′ := s − I [s is even]). Define

the set of vertices Si := {qi3 , qi5 , . . . , qis′} in Di. Note that Si contains all vertices of Pi with odd

index except qi1 ; this is a technical requirement and will be useful later in the proof of Claim 3.2.13.

In the next claim we show each source vertex in Di has a directed path to at most one of the

vertices of Si. This implies that Di contains at least |Si| = (s′− 1)/2 ≥ s−2
2 sources since either the

vertex in Si is a source or there is a unique source connected to it.

Claim 3.2.12. Any source of Di is connected by directed paths to at most one of the vertices of Si.

Proof. Let [pj , qj ] be a potential child of [pi, qi], connected by directed paths to two vertices qia , qib ∈
Si, where a + 2 ≤ b. We show that using [pj , qj ], we can obtain a shorter chain for pi, which is a

contradiction.

First note the transitivity: if x is a potential child of y, and y is a potential child of z, then x is also

a potential child of z. Since each interval is only adjacent to its potential children, and this property

is transitive, qia and qib are potential children of [pj , qj ]. Therefore, qia , qib ∈ [pj+2, qj) ⊂ (pj , qj).

Hence, all the vertices between them in Pi, and in particular qia+1
, are also contained in (pj , qj).

Since [pj , qj ] is a potential child of [pi, qi], [pj , qj ] is a subinterval of [pi, qi], and pj ∈ [pi+2, qi).

Therefore, since C(pj , qj) is a near minimum cut, and at least three vertices of Pi are included in

(pj , qj), by conclusion (3) Claim 3.2.10 we may obtain a shorter chain for pi which is a contradiction.

Now we are ready to define the s′−1
2 directed edges from (pi, qi) to its potential children: for

each vertex qij ∈ Si, we add an edge from [pi, qi] to one of the sources (i.e., vertices with in-degree

0) in Di that has a directed path to qij .
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It remains to show that after the construction of D the in-degree of each vertex is at most 4. It

is worth noting that, indeed some of the vertices may have in-degree more than 1. Let us give an

example. Suppose [pi, qi], and [pi+1, qi+1] are two bad intervals. Since [pi+1, qi+1] is not a potential

child of [pi, qi], both of [pi, qi] and [pi+1, qi+1] can have an edge to a source vertex in V (Di)∩V (Di+1).

In the next claim we show that if two intervals are both adjacent to a vertex of Di, then their

corresponding cuts do not cross.

Claim 3.2.13. Assume that two bad intervals [pi, qi] and [pj , qj ] are both directly adjacent to a vertex

x ∈ V (D). Then we either have pj = pi+1, or pi = pj+1, or pj , qj ∈ [pi, qi), or pi, qi ∈ [pj , qj).

Proof. Assume that pi 6= pj+1 and pj 6= pi+1. Since each bad vertex has exactly one associated

interval in D, we also have pi 6= pj . First of all, note that by claim’s assumption, x is a potential

child of both of the intervals. Therefore, [pi+2, qi) and [pj+2, qj) have a non-empty intersection.

Without loss of generality, assume that pj ∈ [pi, qi) (the other cases are equivalent). We need to

show that qj ∈ [pi, qi). Suppose not; let Pi = qi0 , . . . , qil be the shortest chain assigned to pi. We

show that we may modify Pi and obtain a shorter chain for pi.

Since [pi, qi] is adjacent to x, by definition x is a source in Di that has a directed path to one of

the vertices of Si (say qia) in Di (note that x may be equal to qia). Since [pj , qj ] is also adjacent to

x, by transitivity, qia is a potential child of [pj , qj ]. Moreover, since qj /∈ [pi, qi), all of the vertices

qi1 , qi2 , . . . , qia are also potential children of [pj , qj ] (note that since we may have qj = qi0 = qi, qi0

is not necessarily a potential child of [pj , qj ]). Therefore, we have qi1 , qi2 , . . . , qia ∈ (pj , qj). Since by

construction of Si, a ≥ 3, at least 3 vertices of the chain Pi is contained in (pj , qj).

Since pj ∈ [pi, qi), but pj /∈ [pi, pi + 1], we have pj ∈ [pi+2, qi). Moreover, since qj /∈ [pi, qi),

C(pj , qj) crosses C(pi, qi). Therefore, since C(pj , qj) is a near minimum cut that contains three

consecutive vertices of Pi, by conclusion 3 of Claim 3.2.10 we may obtain a shorter chain for pi,

which is a contradiction.

Now we can show that the in-degree of each vertex in D is at most 4:

Claim 3.2.14. The in-degree of each vertex of D is at most 4.

Proof. We prove the claim by contradiction. Let x ∈ V (D) be a vertex with in-degree at least 5. We

show that one of the 5 intervals adjacent to x is indeed a potential child of another one, and thus

x was not a source vertex for at least one of the induced DAGs associated to one of these intervals,

which is a contradiction.

First of all, since each bad vertex has exactly one associated interval in D, the 5 intervals must

start at distinct vertices of the polygon. Therefore, among these 5 intervals we can find 3 intervals

[pi, qi], [pj , qj ], [pk, qk] such that pi 6= pj+1, pj−1, pj 6= pl+1, pl−1, and pk 6= pi+1, pi−1.
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pi

qk

qj

pj

pk

qi

Figure 3.2.5: Setting in the proof of Claim 3.2.14. The red point is the point corresponding to
vertex x.

By Claim 3.2.13, we can assume (perhaps after renaming) that pj , qj , pk, qk ∈ [pi, qi). So, we

must have pj , pk ∈ [pi+2, qi). Therefore, [pj , qj ], [pk, qk] are potential children of [pi, qi] unless they

are not a subinterval of [pi, qi] (i.e. qj ∈ [pi, pj), and qk ∈ [pi, pk)).

Suppose they are not a subinterval of [pi, qi]; by Claim 3.2.13 we can assume pk, qk ∈ [pj , qj),

and pk ∈ [pj+2, qj). But since [pj , qj ], [pk, qk] are not a subinterval of [pi, qi], [pk, qk] must be a

subinterval of [pj , qj ] (see Figure 3.2.5. So, [pk, qk] is a potential child of [pj , qj ]. This means that

[pk, qk] ∈ V (Dj), so x was not a source vertex for [pj , qj ] in the construction of D, and there is no

directed edge from [pj , qj ] to x which is a contradiction.

This completes the proof of Lemma 3.2.11.

3.2.1 Cut Classes with Inside Atoms

In this subsection we show that inside atoms (vertices) of the polygon representation do not have a

significant impact on the number of pairs of vertices that are highly connected. First, in Lemma 3.2.15

we show that the inside atoms are loosely connected to each other. We use this lemma in Corol-

lary 3.2.16 to extend the proof of Lemma 3.2.9 to the case where the inside atoms are allowed.

Finally, in Corollary 3.2.18 we show that only O(
√
η) fraction of atoms of any cut class can be inside

atoms.

Lemma 3.2.15. For any S ⊆ Vin, |E(S)| ≤ 2η · (|S| − 1) ·∆.

Proof. We show that for any S ⊆ Vin the minimum cut of the induced subgraph G[S] is at most

2η · ∆. Then, the lemma follows by a simple induction. If (A,S − A) is a minimum cut of G[S],

then,

|E(G[S])| = |E(G[A])|+ |E(G[S −A])|+ |(A,S −A)| ≤ 2η · (|A| − 1) ·∆ + 2η · (|S −A| − 1) ·∆ + 2η ·∆

≤ 2η · |S| ·∆.
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Now, fix S ⊆ Vin. In the rest of the proof we show that minimum cut of G[S] is at most 6η · |S| ·∆.

We consider two cases.

There is a k-cycle B1, . . . , Bk such that Bi crosses S for some 1 ≤ i ≤ k. Let T = Bi ∩ S.

Then,

|E(T, S − T )| ≤ |E(δ(Bi))| − |E(Bi → Bi+1)| − |E(Bi → Bi−1)|

≤ (1 + η)∆− (1− η)
∆

2
− (1− η)

∆

2
= 2η ·∆.

where we used E(Bi → Bi+1) to denote E(Bi ∩ Bi+1, Bi+1 − Bi). The last equation follows

by Lemma 2.7.2,

For any u, v ∈ S a k-cycle for u is also a k-cycle for v. Without loss of generality assume |S| >
1. Let (A,A) be a non-trivial near minimum cut crossing S, and let B1, . . . , Bk be a k-cycle

for S, i.e.,

S ⊆ V −
k⋃
i=1

Bi.

Since |S ∩A| 6= ∅ by Lemma 2.7.9 for some 1 ≤ i ≤ k Bi ⊂ A. Similarly, since |S ∩A| 6= ∅ by

Lemma 2.7.9 for some 1 ≤ j ≤ k Bj ⊂ A. Note that by definition j− i > 1. Following the path

of crossing sets Bi, Bi+1, . . . , Bj we find Bi′ that crosses (A,A). Similarly, following the path

of crossing sets Bj , Bj+1, . . . , Bi we find Bj′ that crosses (A,A). By definition Bi′ ∩ Bj′ = ∅.
So,

(1 + η)∆ ≥ |E(δ(A))| ≥ |E(A→ Bi′)|+ |E(A→ Bj′)|+ |E(A ∩ S,A ∩ S)|

≥ (1− η)∆ + |E(A ∩ S,A ∩ S)|.

where the last inequality follows by Lemma 2.7.2. So, |E(A ∩ S,A ∩ S)| ≤ 2η ·∆.

In the next corollary we extend the proof o Lemma 3.2.9 to the polygon representation of the

cut classes that may contain inside atoms:

Corollary 3.2.16. For any integer s ≥ 12 and η ≤ 1/8, there exists at least m = (1 − 8
s−10 )|Vout|

pairs of vertices of G, {{v1, u1}, {v2, u2}, . . . , {vm, um}} such that for each 1 ≤ i ≤ m, |E(vi, ui)| ≥
(1− sη)∆

2 , and each vertex v ∈ V is contained in at most two such pairs.

Proof. We essentially use the same proof strategy of Lemma 3.2.9. The main difference is that

because of the existence of inside vertices the cuts C(pi, pj) considered throughout the proof are not

well defined (recall that for arbitrary i, j C(pi, pj) is not necessarily a near minimum cut in G, so it

may not correspond to a representing diagonal of the polygon representation).
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For an interval [pi, pj ], let

I(pi, pj) := argminI⊆Vin
|δ({vi, . . . , vj−1} ∪ I)|

be a subset of inside vertices which together with the outside vertices in the interval [pi, pj ] makes

the minimum possible cut, and let

C(pi, pj) := δ({vi, vi+1, . . . , vj−1} ∪ I(pi, pj)),

be that cut. Observe that if there is a representing diagonal between pi and pj then C(pi, pj) is the

near minimum cut corresponding to that diagonal.

The only part of the proof of Lemma 3.2.9 that we used the number of edges in C(pi, qi) is

in the proof of conclusion 2 of Claim 3.2.10. Following above definition, the same proof shows

that if there is a path of length l for a point pi, then C(pi, pi+2) ≤ (1 + η · l)∆. Unfortunately,

|C(pi, pi+2)| being small does not immediately imply that |E(vi, vi+1)| is large, since C(pi, pi+2)

may contain inside vertices. It remains to show that if |C(pi, pi+2)| ≤ ∆(1 + sη) for a point pi, then

|E(vi, vi+1)| ≥ (1− sη)∆
2 .

Let I := I(pi, pi+2). Then,

∆(1 + sη) ≥ |C(pi, pi + 2)| ≥ ∆(|I|+ 2)− 2(|E(I)| − |E(I, {vi, vi+1})| − |E(vi, vi+1)|)

≥ ∆(|I|+ 2)− 4η(|I| − 1)∆− 4η|I| ·∆− 2|E(vi, vi+1)|

where the last inequality follows by Lemma 3.2.15, and the next claim. So,

|E(vi, vi+1)| ≥ (1− sη)∆ + ∆(|I| − 8η) ≥ (1− sη)∆.

where the last inequality follows by the assumption η ≤ 1/8.

Claim 3.2.17. For any consecutive outside vertices vi, vi+1 and any inside vertex u ∈ Vin,

|E(u, {vi, vi+1})| ≤ 2η∆.

Proof. Let B1, B2, . . . , Bk be a k-cycle for u. By Theorem 2.7.8 vi, vi+1 ∈ ∪ki=1Bi. Since vi+1 is next

to vi, we must have vi, vi+1 ∈ Bi for some 1 ≤ i ≤ k. Therefore,

|E(u, {vi, vi+1})| ≤ |δ(Bi)| − |E(Bi → Bi+1)| − |E(Bi → Bi1)| ≤ 2η∆.

where we used E(Bi → Bi+1) to denote E(Bi ∩ Bi+1, Bi+1 − Bi). The last inequality follows by

Lemma 2.7.2.
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This completes the proof of Corollary 3.2.16.

Corollary 3.2.18. The number of inside vertices is no more than |Vin| ≤ 1
1−11η |Vout|

[
(s+ 3)η + 8

s−10

]
.

Proof. We use a double counting argument. Let Ein be the set of edges between the inside vertices,

Eout be the set of edges between the outside vertices and Ein-out be the set edges from the inside to

outside vertices. By Lemma 3.2.15 we have |Ein| ≤ 2η|Vin|∆. Since the degree of each inside vertex

is at least ∆, we have

|Ein-out| ≥ ∆(1− 4η)|Vin|. (3.2.1)

Let s ≥ 12 be an integer (it will be fixed later), by Corollary 3.2.16, there are m := (1− 8
α−10 )|Vout|

pairs of outside vertices such that the vertices in each pair are connected by at least (1−sη)∆
2 edges.

We have

|Eout| ≥
∆

2
(1− sη)(1− 8

s− 10
)|Vout|. (3.2.2)

Finally, by Lemma 3.2.7 we have

|V |(1 + 3η)
∆

2
≥ |Ein|+ |Eout|+ |Ein-out|. (3.2.3)

By combining equations (3.2.1),(3.2.2), and (3.2.3) we obtain:

(|Vin|+ |Vout|)(1 + 3η)
∆

2
≥ ∆(1− 4η)|Vin|+

∆

2
(1− sη)(1− 8

s− 10
)|Vout|

Therefore,

|Vin| ≤
1

1− 11η
|Vout|

(
(s+ 3)η +

8

s− 10

)

Now we may complete the proof of Theorem 3.2.6:

Proof of Theorem 3.2.6. By Corollary 3.2.16 there are m := (1− 8
s−10 )|Vout| pairs of vertices of G

that are connected by at least (1− sη)∆
2 edges (for any integer s ≥ 12). By Corollary 3.2.18,

(1− 8

s− 10
)|Vout| ≥

(
1− 8

s− 10
− 1

1− 11η

(
(s+ 3)η +

8

s− 10

))
|V |

pairs of vertices of H such that each pair is connected by at least (1− sη)∆
2 edges. Let s = b

√
9/ηc,

Then, we can let α′ = 3 since (1− sη)∆
2 ≥ (1− 3

√
η)∆

2 . On the other hand, since η < 1/100,

8

s− 10
+

1

1− 11η
((s+ 3)η + 8/(s− 10)) ≤ 2− 11η

1− 11η
· 8√

9/η − 11
+

(
√

9/η + 3)η

1− 11η

≤ 2.13 · 4.22
√
η + 1.13(3

√
η + 3η) ≤ 14

√
η
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Figure 3.2.6: The left graph shows a fractional solution of LP (2.4.1). The dashed edges have fraction
1/2 and the solid edges have fraction 1. Consider the cut class C corresponding to the two minimum
cuts shown with dashed blue lines. This cut class has 4 atoms. In the right graph we show G(ψ(C))
where the fraction of edges between any two adjacent vertices is 1, e.g., the fraction of edge between
{2} and {1, 6} is x1,2 + x1,6 = 1.

so we can let α = 14.

3.2.2 Applications to TSP

In this section we describe an application of the machinery that we just developed to the feasible

solutions of the LP relaxation of TSP. Assume that G = (V,E,x) is a fractionally 2-edge connected

2-regular grap, i.e., x is a feasible solution to LP (2.4.1), and let n := |V |. The following corollary

follows from Theorem 3.2.5.

Corollary 3.2.19. For any η < 1/100 and any cut class C of (1 + η)-near minimum cuts of graph

G = (V,E,x), H = G(ψ(C)) satisfies the following:

i) There exists at least m := (1−14
√
η)|ψ(C)| pairs of vertices of H, {(v1, u1), (v2, u2), . . . , (vm, um)}

such that for each 1 ≤ i ≤ m, x{vi,ui} ≥ 1− 3
√
η, and each vertex v ∈ V (H) is contained in at

most two such pairs.

ii) |ψ(C)| ≤ x(E(H)) ≤ (1 + 3η)|ψ(C)|.

We remark that if G is a fractional graph, then G(ψ(C)) is also a fractional graph where the frac-

tion of each edge is the sum of the fraction of edges between the contracted vertices (see Figure 3.2.6).

Using above corollary we show that for η small enough, either a constant fraction of edges appear

in a constant number of (1 + η)-near minimum cuts, or x is nearly integral. If x is integral, that

is if G is a Hamiltonian cycle, then every edge belongs to n− 1 minimum cuts (see Figure 3.2.7).

Our characterization proves an approximate converse of this statement: for some large constant τ , if

almost all the edges are in more than τ near minimum cuts, then the graph is close to a Hamiltonian

cycle in the sense that almost all of its edges are nearly integral.
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Figure 3.2.7: Each edge of a cycle of length n is contained in n− 1 minimum cuts.

Definition 3.2.20. For τ ≥ 4, we say a cut class C is large if |ψ(C)| ≥ τ , and small otherwise.

Let Large(τ) be the multi-set of all atoms of the large cut classes, i.e.

Large(τ) =
⋃

C:|ψ(C)|≥τ

ψ(C).

Note that since τ ≥ 4, by Lemma 2.6.3 for any two atoms A,B in Large(τ), we have A 6= B.

The size of Large(τ) plays an important role. It can be shown that we always have |Large(τ)| ≤
n(1 + 2

τ−2 ) (see the proof of Lemma 3.2.21). We show that if |Large(τ)| < (1− ε)n , then a constant

fraction of edges are in constant number of near minimum cuts. Otherwise x is nearly integral.

Lemma 3.2.21. For any τ ≥ 4, ε ≥ 1
τ−2 and η < 1/100, if |Large(τ)| ≥ (1 − ε)n then there is a

set E′ ⊆ E such that |E′| ≥ (1− 14
√
η − 17ε)n and for any e ∈ E′, xe ≥ 1− 3

√
η.

Proof. Recall that an atom A ∈ ψ(C) is a singleton if |A| = 1. The main idea of the proof is that, for

any cut class C, an edge of fraction close to 1 in G(ψ(C)) between two singleton atoms correspond to

an edge of fraction close to 1 in G. Note that even an edge of fraction 1 between two non-singleton

atoms many not correspond to any edge of fraction 1 in G (see Figure 3.2.6).

Let L be the number of large cut classes. By Corollary 2.6.12,

L ≤ n

τ − 2
.

Applying Corollary 2.6.4 to the set of large cut classes, there is a set P of mutually disjoint atoms

of Large(τ) such that

|P | ≥ −2(L− 1) + |Large(τ)|.

So, by lemma’s assumption

|P | ≥ −2(L− 1) + |Large(τ)| ≥ 2n

τ − 2
+ (1− ε)n ≥ n

(
1− ε− 2

τ − 2

)
Since the atoms in P are mutually disjoint, there are at least n(1 − 2ε − 4

τ−2 ) singletons in P .

Therefore, the number of non-singleton atoms of Large(τ) is at most n(2ε+ 6
τ−2 ).
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Let H = (N,F, x) be the disjoint union of graphs G(ψ(C)) for all large cut classes C. Observe

that each vertex of H corresponds to an atom of a large cut class, so H has |Large(τ)| vertices. By

Corollary 3.2.19, there is a subset F ′ of edges of H such that for each e ∈ F ′, xe ≥ 1− 3
√
η, and

|F ′| ≥
∑

C:|ψ(C)|≥τ

|ψ(C)|(1− 14
√
η) = |Large(τ)|(1− 14

√
η) ≥ n(1− ε− 14

√
η)

Furthermore, each vertex of H is adjacent to at most two edges of F ′. Now, let F ′′ ⊆ F ′ be the set

of edges such that both of their endpoints are singletons. Observe that |F ′′ − F ′| is at most twice

the number of non-singleton atoms of Large(τ). So,

|F ′′| ≥ n(1− ε− 14
√
η)− 2n

(
2ε+

6

τ − 2

)
≥ n(1− 14

√
η − 15ε).

In the last inequality we used the assumption ε > 1
τ−2 . The lemma follows from the fact that each

edge in F ′′ correspond to an actual edge of G.

Next, we show that if |Large(τ)| < (1 − ε)n, then there is a set E′Small of edges of G such that

x(E′Small) ≥ Ω(n) and each edge e ∈ E′Small is contained in only a constant number of near minimum

cuts.

Definition 3.2.22. We say an edge e is contained in a cut class C if the endpoints of e belong to

two distinct atoms of C.

Let ESmall be the set of edges that are not contained in any of the large cut classes, i.e., they are

only contained in small cut classes. In the next lemma we show that if |Large(τ)| < (1− ε)n, then

x(ESmall) is large:

Lemma 3.2.23. For any η < 1/100 and ε > 6η, If |Large(τ)| < (1−ε)n then x(ESmall) ≥ n(ε−3η).

Furthermore, there is a set E′Small ⊆ ESmall such that x(E′Small) ≥ ε · n/4 and each e ∈ E′Small is

contained in at most 21τ · (τ − 3)/ε near minimum cuts.

Proof. By Corollary 3.2.19, for any cut class C,

x(E(G(ψ(C)))) ≤ |ψ(C)|(1 + 3η).

So, ∑
C:|ψ(C)|≥τ

x(E(G(ψ(C)))) ≤ |Large(τ)|(1 + 3η) < n(1− ε)(1 + 3η) ≤ n(1− ε+ 3η).

Since x is a feasible solution of LP (2.4.1), x(E) = n. For ESmall = E − ∪C:|ψ(C)|≥τE(G(ψ(C))), we

have x(ESmall) ≥ n(ε− 3η) ≥ nε/2.
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By part (iii) Corollary 2.6.12,

∑
C:|ψ(C)|≤τ

x(E(G(ψ(C)))) ≤
∑

C:|ψ(C)|≤τ

|ψ(C)|(1 + 3η) ≤ 5n(1 + 3η).

So, by Markov inequality there is a set E′Small ⊆ ESmall such that x(E′Small) ≥ x(ESmall)/2 and any

edge e ∈ E′Small is contained in at most

2 · 5n(1 + 3η)

x(ESmall)
≤ 21/ε

small cut classes. But by Corollary 2.7.5, each small cut class has at most τ · (τ − 3) near minimum

cuts. So, each edge in E′Small is contained in at most 21τ · (τ − 3)/ε near minimum cuts.

3.3 Locally Hamiltonian Property of Random Spanning Trees

Throughout this section, we assume µ is a λ-random spanning tree distribution with marginals

z = (1 − 1/n)x, and we use T ∼ µ to denote a random tree sampled from µ. Also, for the sake

of brevity of arguments we ignore 1/n factors by letting n sufficiently larger such than all of the

constants that we consider throughout. So, we assume T preserves the marginals in x. Unless

otherwise specified, we let x be a feasible solution of Held-Karp relaxation (2.4.1), and P [.] is the

probability under samples from µ.

If x is a feasible solution of (2.4.1), then the expected degree of all vertices under µ is 2. So,

T ∼ µ in expectation looks like a Hamiltonian path. But, we do not expect T to be a Hamiltonian

cycle; as an example if G is a complete graph, and xe = xe′ for any two edges e, e′, then µ is just the

uniform spanning tree distribution, so the probability that T is a Hamiltonian path is exponentially

small in n.

So, instead of looking for a Hamiltonian path globally, in this section we prove T locally looks like

a Hamiltonian path. Recall that in Example 2.9.17 we show that if the expected degree of a vertex

is 2 under a λ-random spanning tree distribution, then degree of that vertex is 2 with a constant

probability. This shows that if we only consider a single vertex of G we see an induced Hamiltonian

path with a constant probability. Now, let us consider two vertices u, v ∈ V . Can we show both

u and v have degree 2 in T with a constant probability? In this section we answer this question.

We remark that it is a fascinating open problem to extend this to more than 2 vertices, i.e., find a

necessary and sufficient condition for the joint event that 3 or any constant number of vertices of G

have degree 2. We have some partial results, e.g., in Chapter 6 we show any small cut class of near

minimum cuts satisfy a locally Hamiltonian property.

Let us fix two vertices u, v ∈ V . By Example 2.9.18, the probability that each of them have a

degree 2 can be as small as 1/e. So, we cannot use the union bound to show both u, v have degree
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2 in T with a non-zero probability. We can neither argue that the degree of u in T is independent

of the degree of v, e.g., if z{u,v} > 0, then conditioning on |δ(u) ∩ T | = 2 changes the distribution

of edges adjacent to v. Therefore, we use several properties of strongly Rayleigh measures to bound

this probability.

Before getting into the details of the argument we include an example that exhibit a graph where

the expected degree of u, v is 2 but the probability that u, v have degree 2 simultaneously is inversely

polynomial in n.

Example 3.3.1. In this example we show in the graph illustrated in left diagram of Figure 3.3.8

the expected degree of u, v is 2±O(1/
√
n), but the probability that u, v have degree 2 simultaneously

is O(1/
√
n).

Consider the λ-random spanning tree distribution corresponding to the graph in the left diagram of

Figure 3.3.8 where the λ values are shown next to each edge. (note that the corresponding marginal

vector is not a feasible solution of (2.4.1)). Since λ{u′,u}, λ{v′,v} = ∞ both of these edges are

in T with high probability. We show that with probability 1 − O(1/
√
n) exactly one of the edges

{u, v}, {u′, v′} is in T and exactly one of the edges {u,w}, {v, w} is in T . This shows that the expected

degree of each of u, v is about 2, but |T ∩ δ(u)|+ |T ∩ δ(v)| is odd with probability 1−O(1/
√
n) which

proves our claim.

First, since {u, u′}, {v, v′} ∈ T with high probability, at most one of {u, v}, {u′, v′} is in T . Also,

if both {u,w}, {v, w} ∈ T , then since λ{u,v} =
√
nλ{u,w}, we can remove one of them and add {u, v}

and obtain a new tree T ′ such that P [T ′] =
√
n · P [T ]. So, with probability 1− 1/

√
n T has at most

one of {u, v}, {u′, v′} and at most one of {u,w}, {v, w}.
It remains to show that with high probability none of {u, v}, {u′, v′} is in T , and none of {u,w}, {v, w}

is in T . Here, we show that latter, the former can be proved similarly. Suppose {u,w}, {v, w} /∈ T .

Then, T must have all of the edges of one of the two paths of length n/2− 1 to connect w to u′ or

v′. But, in this case we can add {u,w} to T and remove one of the n/2 − 1 edges of that path to

obtain Θ(n) distinct trees T1, . . . , Tn/2−1. By definition of vector λ,

n/2−1∑
i=1

P [Ti] ≥ Ω(
√
n)P [T ] .

So, with probability 1−O(1/
√
n) a random tree T has at least one of {u,w}, {v, w}.

By the above example, we cannot show that any arbitrary pair of vertices u, v with expected

degree 2 have even degree in a λ-random spanning tree with a constant probability. As we prove

next, the reason is that in the above example P [{u, v} ∈ T ] ≈ 1/2. In the next proposition we

show that for any λ-random spanning tree distribution such that the expected degree of u, v is 2, if

the probability of the edge connecting u to v is bounded away from 2 (if there is no edge between

u, v then this probability is zero), then both of u, v have even degree with constant probability.
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Figure 3.3.8: The left diagram represents the λ values assigned to the edges of a graph. There are
two paths from w to v′, u′, where each path has a length of n/2 − 1. In the right we show the
approximate probability of each edge (we dismissed O(1/n) factors). Although the expected degree
of u, v are two, the probability that both of them have two edges in λ-random spanning tree is
O(1/

√
n).

Throughout this section, for vertices u,w ∈ V we use the notation δw(u) := {{u, v} : v 6= w}.

Proposition 3.3.2. Let µ be a λ-random spanning tree distribution, u, v ∈ V and e = {u, v}. If

E [|δ(u) ∩ T |] = E [|δ(v) ∩ T |] = 2 and for ε < 1/10 we either have P [e ∈ T ] < 1
2 − ε or P [e ∈ T ] >

1
2 + ε, then

Pµ [|T ∩ δ(u)| = 2, |T ∩ δ(v)| = 2] ≥ ε

10000
.

We emphasize that the above proposition holds for any random spanning tree distribution as

long as the expected degree of u, v is 2 and the probability of edge e is bounded away from 1/2.

We show even if P [{u, v} ∈ T ] ≈ 1/2, but E [|(δv(u) ∪ δu(v)) ∩ T |] is bounded away from 3 then the

conclusion of the above proposition holds (up to some constant loss in the right hand side.

We prove the above proposition through a sequence of lemmas. The proofs use several properties

of the strongly Rayleigh measures that we discussed in Section 2.9.

Lemma 3.3.3. Let E1, E2 ⊆ E be two disjoint subset of edges, and let X := |T ∩E1|, Y := |T ∩E2|.
If for ε, α ≥ 0 and 0 ≤ β ≤ 1 the following conditions are satisfied,

ε ≤ P [X + Y = 2] (3.3.1)

α ≤ P [X ≤ 1] , P [Y ≤ 1] (3.3.2)

β ≤ E [X] , E [Y ] (3.3.3)
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then

P [X = 1, Y = 1] ≥ εα

3
β(1− β/2)2.

Proof. By (3.3.1), we have:

P [X = 1, Y = 1] = P [X = 1, Y = 1|X + Y = 2]P [X + Y = 2] ≥ εP [X = 1, Y = 1|X + Y = 2]

Let γ := αβ(1 − β/2)2/3. It is sufficient to show that P [X = 1, Y = 1|X + Y = 2] ≥ γ. Observe

that by Theorem 2.9.4 {µ|X + Y = 2} is strongly Rayleigh, let µ′ be this measure. So, by Proposi-

tion 2.9.14

P [X = 1, Y = 1|X + Y = 2]
2 ≥ P [X = 2, Y = 0|X + Y = 2]P [X = 0, Y = 2|X + Y = 2]

Since either of the terms in the RHS can be zero, to prove the lemma it is enough to lower bound

P [X ≥ 1|X + Y = 2] and P [Y ≥ 1|X + Y = 2] by 3γ/2. This is because by definition γ ≥ 1/6, and

Pµ′ [X = 0] + Pµ′ [X = 1] + Pµ′ [X = 2] = 1.

By symmetry, it is sufficient to show

P [X ≥ 1|X + Y = 2] = P [Y ≤ 1|X + Y = 2] ≥ 3γ/2.

Since X ≥ 1 and Y ≤ 1 are an upward (resp. downward) event, by Theorem 2.9.11

P [Y ≤ 1|X + Y = 2] ≥ P [Y ≤ 1|X + Y ≥ 2]

P [X ≥ 1|X + Y = 2] ≥ P [X ≥ 1|X + Y = 1]

In the second equation, if X + Y = 1 has a zero probability, we let P [.|X + Y = 1] = 0. Putting

above equations together, it is sufficient to show the following,

P [Y ≤ 1|X + Y ≥ 2] + P [X ≥ 1|X + Y = 1] ≥ 3γ. (3.3.4)

By, the Bayes rule,

P [Y ≤ 1] = P [Y ≤ 1|X + Y ≥ 2]P [X + Y ≥ 2] + P [Y ≤ 1|X + Y ≤ 1]P [X + Y ≤ 1]

≤ P [Y ≤ 1|X + Y ≥ 2] + P [X + Y ≤ 1]

= P [Y ≤ 1|X + Y ≥ 2] + P [X = 1, Y = 0] + P [X = 0, Y ≤ 1]

= P [Y ≤ 1|X + Y ≥ 2] + P [X ≥ 1|X + Y = 1] + P [X = 0, Y ≤ 1] . (3.3.5)

It remains to upper bound P [X = 0, Y ≤ 1]. By the negative association property and (3.3.3)

E [X|Y ≤ 1] ≥ E [X] ≥ β.
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Now, if β ≥ 1, by Proposition 2.9.14 the mode of X under the distribution {.|Y ≤ 1} is at least 1,

so P [X = 0|Y ≤ 1] ≤ 1
2 . On the other hand, if β ≤ 1, by Proposition 2.9.16

P [X = 1|Y ≤ 1] ≥ Ber(β, 1) = β(1− β/2)2.

and P [X = 0|Y ≤ 1] ≤ 1− β · (1− β/2)2. Since β ≤ 1, we can put them together and obtain

P [X = 0, Y ≤ 1] = P [X = 0|Y ≤ 1]P [Y ≤ 1] ≤ max{1/2, 1− β(1− β/2)2} · P [Y ≤ 1]

≤ (1− β(1− β/2)2) · P [Y ≤ 1]

the last inequality follows since β ≤ 1. By (3.3.5) we get,

P [Y ≤ 1|X + Y ≥ 2] + P [X ≥ 1|X + Y = 1] ≥ β(1− β/2)2 · P [Y ≤ 1]

Finally, using equation (3.3.2) we obtain equation (3.3.4) which completes the proof.

For any edge e ∈ E we use Ie := |T ∩ {e}| to denote the bernoulli random variable indicating

that e is in T .

Corollary 3.3.4. Let u, v ∈ V , and e = {u, v}, X := |T ∩ dv(u)|, Y := |T ∩ du(v)|. If E [X + Ie] =

2,E [Y + Ie] = 2, P [Ie] ≥ 1
2 −

1
10 and P [X + Y = 2|Ie = 1] ≥ ε, then

P [X = 1, Y = 1, Ie = 1] ≥ ε

200
.

Proof. Let µ′ = {µ|Ie = 1} be the corresponding λ-random spanning tree distribution on G/{e}.
Observe that for any edge f ,

Pµ′ [f ∈ T ] = Pµ [f ∈ T |Ie = 1] .

We show that µ′ satisfies all of the conditions of Lemma 3.3.3. Since Pµ′ [X + Y = 2] ≥ ε, the

first condition is satisfied. Since Eµ [X] = Eµ [Y ] = 2 − P [e], by the negative association property,

Corollary 2.9.9,

1 ≤ Eµ′ [X] ≤ 1.5 +
1

10
, and

1 ≤ Eµ′ [Y ] ≤ 1.5 +
1

10
.

Now it is straightforward to see that α ≥ 3
20 , and β = 1 in the assumptions of Lemma 3.3.3.

Therefore,

Pµ [X = 1, Y = 1, Ie = 1] = Pµ′ [X = 1, Y = 1] · Pµ [Ie = 1] ≥ εα

3
β(1− β/2)2(1/2− 1/10) ≥ ε

200
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Lemma 3.3.5. Let µ be a λ-random spanning tree distribution, u, v ∈ V , such that δ(u) ∩ δ(v) = ∅
and X := |T ∩ δ(u)| and Y := |T ∩ δ(v)|. If for ε, α ≥ 0 and 1 ≤ β ≤ 2 the following conditions are

satisfied,

ε ≤ P [X + Y = 4] (3.3.6)

α ≤ P [X ≤ 2] , P [Y ≤ 2] (3.3.7)

β ≤ E [X] , E [Y ] (3.3.8)

then

P [X = 2, Y = 2] ≥ εα

3
(β − 1)(1− (β − 1)/2)2.

Proof. The proof is very similar to Lemma 3.3.3. The only difference is that in this case the random

variables X,Y are at least 1 with probability 1. So, if we define X ′ = X − 1, Y ′ = Y − 1, we can

rewrite the same equations for X ′, Y ′, e.g., observe that {µ|X ′+Y ′ = 2} is the same as {µ|X+Y = 4}
and is strongly Rayleigh. So, we obtain the same conclusion as of Lemma 3.3.3 except that β is

replaced with β − 1.

Corollary 3.3.6. Let µ be a λ-random spanning tree distribution, u, v ∈ G and e = {u, v}, X :=

|T ∩dv(u)|, Y := |T ∩du(v)|, and Ie := |T ∩{(u, v)}|. If E [X + Ie] = E [Y + Ie] = 2, Pµ [Ie] ≤ 1
2 + 1

10

and PT∼µ [X + Y = 4|Ie = 0] ≥ ε, then

P [X = 2, Y = 2, Ie = 0] ≥ ε

100
.

Proof. Let µ′ = {µ|Ie = 0} be the measure obtained from µ conditioned on Ie = 0. We show that

µ′ satisfies all of the conditions of Lemma 3.3.5. Since Pµ′ [X + Y = 4] ≥ ε, the first condition is

satisfied. Since Eµ [X] = Eµ [Y ] = 2− Pµ [Ie], Fact 2.9.8 implies that

1.5− 1

10
≤ Eµ′ [X] ≤ 2

1.5− 1

10
≤ Eµ′ [Y ] ≤ 2

Now it is straightforward to see that α ≥ 1
3 using Markov’s inequality, and β ≥ 1.5 − 1

10 in the

assumptions of Lemma 3.3.5. Therefore,

Pµ [X = 2, Y = 2, Ie = 0] = Pµ′ [X = 2, Y = 2]·P [Ie = 0] ≥ εα

3
(β−1)(1−(β−1)/2)2(1/2−1/10) ≥ ε

100
.

Now we are ready to prove Proposition 3.3.2.
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1
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Figure 3.3.9: A strongly Rayleigh distribution of subgraphs of a graph G where the marginal prob-
ability of each of {u, v} and {v, w} is 1/2, the expected degree of each of u, v, w is 2, but the degree
of v is even if and only if the degree of each of u and w is odd.

Proof of Proposition 3.3.2. Let X := |T ∩ δv(u)| and Y := |T ∩ δu(v)| be the random variables

indicating the number of edges of δv(u) and δu(v) that are sampled in T ∼ µ. If E [Ie] < 1/2 − ε,
then by negative association property, Fact 2.9.8 and Corollary 2.9.9, we have

3 + 2ε ≤ E [X + Y |Ie = 0] ≤ 4.

So, by Proposition 2.9.16

P [X + Y = 4|Ie = 0] ≥ Ber(3 + 2ε, 4) ≥ 2εe−3.5 ≥ ε/20.

and therefore the conclusion follows by Corollary 3.3.6.

If xe > 1/2 + ε the statement can be proved similarly by conditioning on Ie = 1. By Corol-

lary 2.9.9,

2 ≤ E [X + Y |Ie = 1] ≤ E [X + Y ] ≤ 3− 2ε.

Therefore, by Proposition 2.9.16

P [X + Y = 2|Ie = 1] ≥ Ber(3− 2ε, 2) ≥ min{2ε/3, (1− 3/4)4} ≥ ε/30.

The proposition follows by Corollary 3.3.4.

Now we discuss the case where there is an edge of probability close to 1/2 between u and v. Recall

that in Example 2.9.17 we show that if x{u,v} ≈ 1/2, then it could be that P [|T ∩ δ(u)| = 2, |T ∩ δ(v)| = 2] ≈
0. In the following lemma we show that if x{u,v} ≈ 1/2 and x{v,w} ≈ 1/2 then with a constant prob-

ability either u and v will have an even degree, or v and w will have an even degree. The proof

of the lemma is different from the above proofs, and we use properties of λ-random spanning trees

that do not necessarily extend to generalize to strongly Rayleigh measures. In particular, we use

the connection between random spanning trees and electrical flows in the proof.

Let us show that this is necessary, i.e., there is a strongly Rayleigh distribution of subgraphs of

G such that x{u,v}, x{v,w} = 1/2 and the expected degree of each of u, v, w is 2, but the probability

that both u and v have even degree is zero, and the probability that both v and w have even degree

is zero. Consider the graph in Figure 3.3.9. This is a product distribution on blue/red edges, so is
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u
X

v
Y

w
Z

e f

Figure 3.3.10: Setting of Lemma 3.3.7. Random variables X,Y, Z count the number of edges adjacent
to u, v, w (except e, f that are in a random tree T .

strongly Rayleigh. It is also easy to verify that the marginal probability of each of {u, v}, {v, w} is

1/2 and the expected degree of the vertices are 2.

For any two random variables X,Y , let Cov(X,Y ) := E [XY ] − E [X]E [Y ]. For example, by

Theorem 2.8.8, for any two edges e, f ∈ E,

Cov(Ie, If ) = P [Ie] (E [If |Ie = 1]− P [If ]) = −ie(f)if (e). (3.3.9)

As another example, for any random variable X and any edge e,

E [X|Ie = 1] = E [X] +
Cov(Ie, X)

P [Ie = 1]
, (3.3.10)

E [X|Ie = 0] = E [X]− Cov(Ie, X)

P [Ie = 0]
. (3.3.11)

Lemma 3.3.7. Let µ be a λ-random spanning tree distribution, u, v, w ∈ V , e = {u, v}, f = {v, w}.
If E [|δ(u) ∩ T | = 2], E [|δ(v) ∩ T |] = 2 and for ε = 1/1000,

1

2
− ε ≤ P [e ∈ T ] ,P [f ∈ T ] ≤ 1

2
+ ε,

then at least one of the following two equations hold,

P [|T ∩ δ(u)| = 2, |T ∩ δ(v)| = 2] ≥ ε

2500
, P [|T ∩ δ(v)| = 2, |T ∩ δ(w)| = 2] ≥ ε

2500
.

Proof. Let X := |T ∩ δv(u)|, Y := |T ∩ δu(v) ∩ δw(v)|, Z := |T ∩ δv(w)| be the random variables

indicating the number of edges of δv(u), δu(v) ∩ δw(v), δv(w) sampled in T , see Figure 3.3.10. Note

that by definition E [X] ≈ E [Z] ≈ 1.5, and E [Y ] ≈ 1).

Let c := −Cov(Ie, If ) for an orientation of the edges that we fix later in the proof. First, assume

that c ≥ ε + ε2 is large. We show the lemma follows by Corollary 3.3.4. Let µ′ = {µ|Ie = 1}. By

(3.3.10)

Pµ′ [If ] =
Cov(Ie, If )

P [Ie = 1]
+ P [If ] ≤ P [If ]− 2ε.

where we used the assumption that P [Ie] ≤ 1/2 + ε. Therefore, Eµ′ [X + Y + If ] ≤ 3 − ε. By
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Proposition 2.9.16

Pµ′ [X + Y + If = 2] ≥ Ber(3− ε, 2) ≥ min{ε/3, (1− 3/4)4}.

So, by Corollary 3.3.4,

P [X = 1, Y + If = 1, Ie = 1] ≥ min{ε/3, 4−4}
200

,

and we are done.

In the rest of the proof assume c < ε(1 + ε). First we show Cov(If , X) or Cov(Ie, Z) is very close

to 0, i.e., we show Ie is essentially independent of Z or If is essentially independent of X. Then we

use Corollary 3.3.4 to prove the lemma.

By (3.3.9),

min{|ie(f)|, |ir(e)|} ≤
√
c ≤

√
ε(1 + ε).

Without loss of generality, assume |if (e)| ≤ ie(f) satisfies the above equation. We fix the following

orientation of the edges: any edge {u, u′} adjacent to u is oriented outwards from u to u′, f is

oriented from w to v and the rest of the edges have arbitrary orientations. Let ifc (.) be the function

if (.) in the graph G/{e}. By Fact 2.8.5, for any edge e′ adjacent to u

if (e′) = ifc (e′) +
if (e)

ie(e)
ie(e′) ≤

√
c

ie(e)
ie(e′). (3.3.12)

In the above inequality we used an important observation that ifc (e′) ≤ 0, this is because e′ is

oriented outwards from u, and ifc (.) is the current function when we are sending one unit of current

from w to v in G/{e}. By Theorem 2.8.8,

−Cov(If , X) =
∑

e′∈δv(u)

−Cov(If , Ie′) =
∑

e′∈δv(u)

if (e′)ie
′
(f) ≤

∑
e′∈δ(u)

|if (e′)| ≤ 2
∑

e′∈δ(u):if (e′)≥0

if (e′)

≤ 2
√
c

ie(e)

∑
e′∈δ(u):if (e′)≥0

ie(e′)

≤ 2
√
c

ie(e)

∑
e′∈δ(u)

ie(e′) ≤ 2
√
c

ie(e)
.

where the first inequality follows by Fact 2.8.4, the second inequality follows by Kirchhoff, that is∑
e′∈δ(u) = ie(e′) = 0, the third inequality follows by (3.3.12), and the fourth inequality follows

by the fact that ie(e′) ≥ 0 for any edge e′ ∈ δ(u). Since we assumed c ≈
√
ε is close to zero, the

above inequality shows If is essentially independent of X. Building on this observation we can use

Lemma 3.3.3 to prove the lemma.
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Let µ′ = {µ|If = 0}. By (3.3.11) we can upper bound Eµ′ [X] as follows,

Eµ′ [X] = E [X|If = 0] = E [X]− Cov(If , X)

P [If = 0]
≤ E [X] +

2
√
c

P [Ie = 1] · P [If = 0]
≤ E [X] + 9

√
ε.

(3.3.13)

If Eµ′ [Y + Ie + Z] ≥ 3 + ε, then by Proposition 2.9.16

Pµ′ [Y + Ie + Z = 4] ≥ Ber(3 + ε, 4) ≥ εe−3−ε ≥ ε/25,

and by Corollary 3.3.6

P [Y + Ie = 2, If = 0, Z = 2] ≥ ε

2500

and we are done. Therefore, we assume Eµ′ [Y + If + Z] ≤ 3 + ε.

Now, let µ′′ = {µ|Ie = 1}. We want to use Lemma 3.3.3 to show that Pµ′′ [X = 1, Y = 1] is a

constant. By negative association, Fact 2.9.8,

1 ≤ Eµ′′ [X] ≤ E [X] + 9
√
ε ≤ 1.5 + ε+ 9

√
ε

0.5− ε ≤ Eµ′′ [Y ] ≤ 1 + 3ε.

where the first equations hold by equation (3.3.13). Letting ε = 0.001, by Proposition 2.9.16

P [X + Y = 2] ≥ min{Ber(2.8, 2),Ber(1.5− 0.001, 2)} ≥ 1

150

and we let β = 0.5− 0.001 and α = 1/10, by Lemma 3.3.3

Pµ′′ [X = 1Y = 1] ≥ α

150 · 3
· β(1− β/2)2 ≥ 1

20000
.

So,

P [X = 1, Y = 1, Ie = 1, If = 0] ≥ Pµ′ [X = 1, Y = 1, Ie = 1]P [If = 0]

≥ Pµ′′ [X = 1, Y = 1] · P [Ie = 1|If = 0]P [If = 0] ≥ 10−5.

where we used Cov(Ie, If ) ≤ ε+ ε2. This completes the proof of Lemma 3.3.7.
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Chapter 4

Asymmetric TSP

In this section we provide an O(log n/ log log n) randomized approximation algorithm for the Asym-

metric TSP. Our algorithm with high probability returns solution of cost O(log n/ log log n) of the

optimum solution of the LP (2.4.2). Our proof also shows that the integrality gap of the Held-Karp

relaxation for the Asymmetric TSP (2.4.2) is bounded above by O(log n/ log logn). We refer the

reader to Section 2.1 for background. The results in this section are based on a joint work with

Arash Asadpour, Michel Goemans, Aleksander Madry and Amin Saberi [AGM+10].

4.1 Introduction

Our approach for ATSP (and for STSP) is very similar to the Christofides algorithm (see Algo-

rithm 4). First we choose a spanning tree T and then we add the minimum cost Eulerian augmen-

tation. An Eulerian augmentation is a set of edges to make T an Eulerian graph (i.e., for the case of

ATSP an Eulerian augmentation makes the in-degree of each vertex equal to its out-degree, and in

the case of STSP it makes the degree of each vertex even). In the case of STSP the minimum cost

Eulerian augmentation can be computed efficiently by finding a minimum cost perfect matching on

odd degree vertices of the tree, and for ATSP it can be computed efficiently by solving a minimum

cost flow problem that makes the in-degree of vertices equal to their out-degree (see equation (4.2.1)

for details).

The main difference between our algorithm and Algorithm 4 is in the selection of the tree. Instead

of choosing an arbitrary minimum spanning tree, we select our tree randomly by rounding an optimal

solution of the LP relaxation of TSP using the rounding by sampling method that we discussed in

Section 3.1. By (3.1.2), for any feasible solution x, E [c(T )] ≤ c(x). So, the main difficulty in our

proofs is in upper bounding the cost of the Eulerian augmentation. For the Asymmetric TSP we

show this cost is at most O(log n/ log log n) · c(x), and for Symmetric TSP we upper bound this cost

by (1/2− ε) · c(x) for some constant ε > 0. In this chapter we define a combinatorial object known

103
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as “thin tree” and we use it to bound the cost of the Eulerian augment. For Symmetric TSP we use

the O-join polytope (2.4.4) to upper bound the cost of Eulerian augmentation.

A simple flow argument using Hoffman’s circulation theorem [Sch03] shows that if the tree chosen

in the first step is “thin” with respect to a feasible solution x of LP (2.4.2), then the cost of the

Eulerian augmentation is within a factor of the “thinness” of c(x). This flow argument works

irrespectively of the actual directions of the (directed) arcs corresponding to the (undirected) edges

of the tree. Roughly speaking, a thin tree with respect to a feasible solution x of LP (2.4.2) is a

spanning tree that, for every cut, contains a small multiple (the thinness) of the corresponding value

of x in this cut when the direction of the arcs are disregarded.

The high level description of our algorithm can be found in Algorithm 6. The proof of our main

Theorem 4.3.3 also gives a more formal overview of the algorithm.

Algorithm 6 An O(log n/ log log n) Approximation Algorithm for the Asymmetric TSP

1: Let x∗ be an optimal solution of LP (2.4.2). Let z∗ be a fractional spanning tree where for all
u, v ∈ V , z∗{u,v} = (1 − 1/n)(x∗u,v + x∗v, u), and let G = (V,E, z∗) be underlying graph of the
fractional spanning tree z.

2: Find weights λ : E → R+ such that the λ-random spanning tree distribution, µ, approximates
the marginal probabilities imposed by z∗, i.e., for all e ∈ E,

Pµ [e ∈ T ] ≤ (1 + 1/n)z∗e

3: Sample a tree T ∗ from µ.
4: Orient each edge of T so as to minimize its cost. Find a minimum cost integral circulation that

contains the oriented tree ~T ∗. Shortcut this multigraph and output the resulting Hamiltonian
cycle.

4.1.1 Notations

Throughout this chapter we assume x is a feasible solution Held-Karp relaxation for Asymmetric

TSP, i.e., LP (2.4.2). Let A denote the support of x, i.e. A = {(u, v) : xu,v > 0}.
Similar to (3.1.1) we can construct a fractional spanning tree from x. We first make this solution

symmetric and then we scale it down by (1− 1/n),

z{u,v} := (1− 1/n) · (xu,v + xv,u). (4.1.1)

We let E be the support of z. For every edge e = {u, v} of E, we can define its cost as min{c(a) :

a ∈ {(u, v), (v, u)} ∩ A}; with the risk of overloading the notation, we denote this new cost of this

edge e by c(e). This implies that c(z∗) < c(x∗).
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4.2 Thin Trees and Asymmetric TSP

In this section we reduce the problem of approximating Asymmetric TSP to the problem of finding

a thin tree. Then, in the next section we show that the tree sampled from the maximum entropy

distribution is almost surely “thin”.

First, we define the thinness property.

Definition 4.2.1. We say that a tree T of G = (V,E) is α-thin with respect to a vector z : E → R+

if for each set S ⊂ V ,

|T ∩ δ(S)| ≤ αz(δ(S)).

Also we say that T is (α, s)-thin if it is α-thin and moreover,

c(T ) ≤ sc(z).

Note that thinness property can be defined for any subgraph of a graph G. Observe that if a

subgraph H is (α, s)-thin with respect to a vector z, then any subgraph of H is also (α, s)-thin with

respect to z.

We give a few remarks about the above definition. In the next theorem we show that if we have a

(α, s)-thin tree with respect to a feasible solution x of LP (2.4.2), then we can obtain an ATSP tour

of cost at most (2α + s)c(x). So, this reduces the problem of approximating ATSP to the problem

of finding a (α, s) thin tree for a small values of α and s. The advantage of this new problem is

that we do not need to worry about the direction of the arcs in the graph, and we can simply treat

them as undirected edges. In Chapter 5 we show that an algorithm for finding an α-thin tree is also

sufficient to find an O(α)-approximation to ATSP, in other words we can also drop the cost of the

edges and only look for α-thin trees for small values of α. Apart from these advantage, the problem

of finding a thin tree has several inherent hardness. For example, for a given tree there is no efficient

algorithm to find its thinness (see Chapter 5 for a more detailed discusson).

Theorem 4.2.2. Let x be a feasible solution x of LP (2.4.2) and z be a fractional spanning tree

as defined in (4.1.1), and let A be the support of x and E be the support of z. Given a (α, s)-

thin spanning tree T ⊆ E with respect to z, we can find a Hamiltonian cycle of cost no more than

(2α+ s)c(x).

Before proceeding to the proof of Theorem 4.2.2, we recall some basic network flow results

related to circulations. A function f : A→ R is called a circulation if f(δ+(v)) = f(δ−(v)) for each

vertex v ∈ V . Hoffman’s circulation theorem [Sch03, Theorem 11.2] gives a necessary and sufficient

condition for the existence of a circulation subject to lower and upper capacities on arcs.

Theorem 4.2.3 (Hoffman’s circulation theorem). For any directed graph G = (V,A), and any two

functions fl, fu : A→ R, there exists a circulation f satisfying fl(a) ≤ f(a) ≤ fu(a) for all a ∈ A if

and only if
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1. fl(a) ≤ fu(a) for all a ∈ A and

2. for all subsets S ⊂ V , we have fl(δ
−(S)) ≤ fu(δ+(S)).

Furthermore, if fl and fu are integer-valued, f can be chosen to be integer-valued.

Proof of Theorem 4.2.2. We first orient each edge {u, v} of T to arg min{c(a) : a ∈ {(u, v), (v, u)}∩
A}, and denote the resulting directed tree by ~T . Observe that by definition of our undirected cost

function, we have c(~T ) = c(T ). We then find a minimum cost augmentation of ~T into an Eulerian

directed graph; this can be formulated as a minimum cost circulation problem with integral lower

capacities (and no or infinite upper capacities). Indeed, set

fl(a) =

{
1 a ∈ ~T
0 a /∈ ~T ,

and consider the minimum cost circulation problem

min{c(f) : f is a circulation and f(a) ≥ fl(a) ∀a ∈ A}. (4.2.1)

An optimum circulation f∗ can be computed in polynomial time and can be assumed to be integral,

see e.g. [Sch03, Corollary 12.2a]. This integral circulation f∗ corresponds to a directed (multi)graph

H which contains ~T . Every vertex in H has an in-degree equal to its out-degree. Therefore, every

cut has the same number of arcs in both directions. On the other hand, since H contains ~T , it is

weakly connected, i.e., it has at least one edge in every cut in G, Therefore H is strongly connected,

so H is an Eulerian directed multigraph. We can extract an Eulerian walk of H and shortcut it to

obtain our Hamiltonian cycle of cost at most c(f∗) since the costs satisfy the triangle inequality.

Note that we only used the tree T to make sure that H is weakly connected, so any other connected

subgraph of G = (V,E) would give us an Eulerian directed multigraph.

To complete the proof of Theorem 4.2.2, it remains to show that c(f∗) ≤ (2α+ s)c(x). For this

purpose, we define

fu(a) =

{
1 + 2αxa a ∈ ~T
2αxa a /∈ ~T .

We claim that there exists a circulation g satisfying fl(a) ≤ g(a) ≤ fu(a) for every a ∈ A. To prove

this claim, we use Hoffman’s circulation theorem 4.2.3. Indeed, by construction, l(a) ≤ u(a) for every

a ∈ A; furthermore, Lemma 4.2.4 below shows that, for every S ⊂ V , we have fl(δ
−(S)) ≤ fu(δ+(S)).

Thus the existence of the circulation g is established. Furthermore,

c(f∗) ≤ c(g) ≤ c(fu) = c(~T ) + 2αc(x) ≤ (2α+ s)c(x),

establishing the bound on the cost of f∗. This completes the proof of Theorem 4.2.2.
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Lemma 4.2.4. For the capacities fl and fu as constructed in the proof of Theorem 4.2.2, the

following holds for any subset S ⊂ V :

fl(δ
−(S)) ≤ fu(δ+(S)).

Proof. Since x(δ−(v)) = x(δ+(v)) for all v ∈ V ,

x(δ−(S)) = x(δ+(S)) (4.2.2)

Irrespective of the orientation of T into ~T , the number of arcs of ~T in δ−(S) is at most α · z(δ(S))

by definition of α-thinness. Thus,

fl(δ
−(S)) ≤ |T ∩ δ(S)| ≤ α · z(δ(S)) < α · (x(δ−(S)) + x(δ+(S))) = 2α · x(δ−(S)),

where the last equality follows by (4.2.2). On the other hand, we have

fu(δ+(S)) ≥ 2α · x(δ+(S)) = 2α · x(δ−(S)) ≥ fl(δ−(S)),

where we have used (4.2.2). The lemma follows.

4.3 Construction of a Thin Tree

In this section prove our main theorem. First, we show that a λ-random spanning tree T sampled

from the (approximately) maximum entropy distribution that preserve ze as the marginal probability

of each edge e ∈ E is α = O(log n/ log log n)-thin with high probability. Combining this with

Theorem 4.2.2 proves our main theorem.

Proposition 4.3.1. Let z be a fractional spanning tree and let E be the support of z. Let λ : E → R+

such that the λ-random spanning tree distribution µ satisfies,

∀e ∈ E, PT∼µ [e ∈ T ] ≤ (1 + ε)ze.

If ε < 0.2, then T ∼ µ is α-thin with probability at least 1− 4/
√
n for α = 4 log n/ log log n .

Proof. In Lemma 4.3.2 we show that the probability that a particular cut δ(S) violates the α-thinness

of T is at most n−2.5z∗(δ(S)). Now, by Theorem 2.7.10 there are at most 4n2β cuts of size at most

β times the minimum cut of G = (V,E, z) for any β ≥ 1. Since, z is a convex combination of all

spanning trees of G, z(δ(S)) ≥ 1 for any S ⊆ V . Therefore there are at most 4n2β cuts δ(S) with

z(δ(S)) ≤ β for any β ≥ 1. Therefore, by applying the union bound, we derive that the probability
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that there exists some cut δ(S) with |T ∩ δ(S)| > αz∗(δ(S)) is at most∫ ∞
x=1

4n2xn−2.5xdx ≤
∫ ∞
x=1

4

nx/2
dx ≤ 4/

√
n,

where each term is an upper bound on the probability that there exists a violating cut of size within

[i− 1, i]. Thus, indeed, T ∼ µ is a α-thin spanning tree with high probability.

Lemma 4.3.2. If ε < 0.2, then for any set S ⊂ V ,

P [|T ∩ δ(S)| > α · z(δ(S))] ≤ n−2.5z(δ(S)),

where α = 4 log n/ log log n.

Proof. By linearity of expectation,

E [|T ∩ δ(S)|] = (1 + ε)z(δ(S)).

Applying Theorem 2.8.7 with

1 + δ = α
z(δ(S))

E [|T ∩ δ(S)|]
≥ α

1 + ε
,

we derive that P [|T ∩ δ(S)| > α · z(δ(S))] can be bounded from above by

P [|T ∩ δ(S)| > (1 + δ)E [|T ∩ δ(S)|]] ≤
( eδ

(1 + δ)1+δ

)E[|T∩δ(S)|]
≤

(
e

1 + δ

)(1+δ)E[|T∩δ(S)|]

=

(
e

1 + δ

)αz(δ(S))

≤
[(

e(1 + ε)

α

)α]z(δ(S))

≤ n−4(1−1/e)z(δ(S)),

where, in the last inequality, we have used that

log

[(
e(1 + ε)

α

)α]
= 4

log n

log log n
· (1 + log(1 + ε)− log(4)− log logn+ log log log n)

≤ −4 log n

(
1− log log log n

log log n

)
≤ −4

(
1− 1

e

)
log n ≤ −2.5 log n,

since e(1 + ε) < 4 and log log logn
log logn ≤ 1

e for all n ≥ 5 (even for n ≥ 3).

This completes the proof of Proposition 4.3.1.
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Now, we are ready to prove the main theorem of this chapter.

Theorem 4.3.3. For a suitable choice of parameters, Algorithm 6 finds a (2 + 8 log n/ log log n)-

approximate solution to the Asymmetric Traveling Salesman Problem with high probability and in

time polynomial in the size of the input.

Proof. The algorithm start by finding an optimal extreme-point solution x∗ to the Held-Karp LP

relaxation of ATSP (2.4.2). Then, we compute a fractional spanning tree z∗ using (4.1.1).

Then, using the algorithm Algorithm 5 with ε = 0.2, we obtain λe : E → R+’s such that the

λ-random spanning tree distribution µ satisfies

P [e ∈ T ] ≤ (1 + ε)z∗e ∀e ∈ E.

Since x∗ was an extreme point solution of (2.4.2), it can be expressed as the unique solution of an

invertible system with only 0− 1 coefficients, and therefore, every entry x∗a is rational with integral

numerator and denominator bounded by 2O(n logn). In particular, z∗min = mine∈E z
∗
e > 2−O(n logn).

So, the algorithm Algorithm 5 indeed runs in polynomial time.

Then, we use the polynomial time sampling procedure described in Subsection 2.8.1 to sample

T ∗ ∼ µ. By Proposition 4.3.1, we know that T ∗ is 4 log n/ log log n-thin with high probability.

Furthermore, E [c(T ∗)] ≤ c(x∗). By Markov inequality, c(T ∗) ≤ 10c(x∗) with probability 9/10. So,

T ∗ is (4 log n/ log log n, 10) thin with high probability (we can also sample several trees and choose

the best one to increase the probability of success to 1−O(1/
√
n).

Finally, we use Theorem 4.2.2 to obtain, in polynomial time, a O(log n/ log log n)-approximation

of our ATSP instance.

The proof also shows that the integrality gap of the Held-Karp relaxation for the Asymmetric

TSP is bounded above by O(log n/ log log n). The best known lower bound on the integrality gap

is only 2, as shown in [CGK06]. Closing this gap is a challenging open question, and this possibly

could be answered using thinner spanning trees. It is worth noting that even a proof of existence of

a thin tree provides an upper bound on the integrality gap of the Held-Karp relaxation.

Corollary 4.3.4. If there always exists a (α, s)-thin spanning tree where α and s are absolute

constants, then the integrality gap of the ATSP Held-Karp LP relaxation (2.4.2) is a constant.

4.4 Tight Examples

We conclude this chapter by providing several tight example for our analysis. First, we construct

a graph where the tree sampled from the maximum entropy distribution is Ω(log n/ log logn)-thin

with high probability.



www.manaraa.com

CHAPTER 4. ASYMMETRIC TSP 110

C1

C2 Ck−1

Ck

Figure 4.4.1: A tight example for Theorem 4.3.3. Suppose we have k cycles C1, . . . , Ck each with k
vertices. The solid edges in the figure have fraction xa = 1−1/k, and the dashed edges have fraction
xa = 1/k. All black edges have cost c(a) = 1, the blue edges have cost c(a) = k2. The optimum
is about 2k2. But, if we use the independent randomized rounding method, then the cost of the
Eulerian augmentation is Ω(log n/ log log n) with high probability.

Suppose that we have a complete graph G = (V,E), and ze = 2/(n − 1) for all e ∈ E. It

is straightforward that z is a fractional spanning tree. Since all of the edges of G has the same

probability, by symmetry, the maximum entropy distribution that preserve the marginal probabilities

of the edges is exactly the uniform distribution on all spanning trees of G.

Next, we show that a uniformly random spanning tree of a complete graph has a vertex of degree

Ω(log n/ log log n) with high probability. Since for each v ∈ V , z(δ(v)) ≤ 2, this implies that the

maximum entropy distribution gives a tree that is Ω(log n/ log log n)-thin with high probability. We

use the Prüfer code to obtain a one to one correspondence between all spanning trees of the complete

graph and sequences of length n− 2 of vertices of V (recall that this correspondence implies that a

complete graph has exactly nn−2 spanning trees). Furthermore, for any vertex v ∈ V , the number

of appearances of v in a Prüfer sequence is equal to the degree of v minus 1 in the corresponding

spanning tree. But, we know that in a sequence of length Ω(n) of n items, there is an item that

appears at least Ω(log n/ log log n) times (see [MR95] for background on balls and bins processes).

So, a random spanning tree has a vertex v of degree Ω(log n/ log logn) with high probability.

Above example shows that the tree sampled from a maximum entropy distribution may indeed

be Θ(log n/ log log n) thin, but note that the thinness of a spanning tree is just a sufficient condition

in upper bounding the size of a ATSP tour. Our second example shows that if instead of sampling a

random spanning tree, we use the independent randomized rounding method (see Section 3.1), then

the cost of the minimum Eulerian augmentation is Ω(log n/ log log n) with high probability.

Let G be a union of k disjoint cycles C1, . . . , Ck each of length k. For each 1 ≤ i ≤ k, the j-th

vertex of the i-th cycle has an arc to the j-th vertex of the i+ 1-st cycle (see Figure 4.4.1). Consider

the following extreme point solution of LP (2.4.2). Let xa = 1 − 1/k for all arcs inside the cycles
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and xa = 1/k for all arcs between the cycles (see [CV00] for a proof that this is indeed an extreme

point solution of Held-Karp relaxation). Furthermore, let c(a) = 1 for all arcs except the arcs from

Ck to C1. For arcs from Ck to C1, let c(a) = k2. Observe that c(x) = Θ(k2).

Now if we choose the edges independently at random, by the properties of the balls and bins pro-

cesses, we choose Ω(log k/ log log k) arcs between Ci, Ci+1 for some 1 ≤ i ≤ k with high probability.

But, this implies that the cost of the Eulerian augmentation is Ω(log k/ log log k) of the optimum,

because the Eulerian augmentation must have Ω(log k/ log log k) of the arcs between Ck and C1 and

each of these arcs has a cost of k2.

Recall that by Lemma 2.8.6 if µ is a λ-random spanning tree distribution, then for any two edges

e, e′,

P [e, e′ ∈ T ] ≤ P [e ∈ T ] · P [e′ ∈ T ] .

If we have equality in the above equation, then e and e′ were independent. The above example

shows that unless we use the strict inequality in the above equation in some part of the analysis, we

cannot prove any approximation factor better than the log n/ log log n ratio.
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Chapter 5

Planar Asymmetric TSP

In this chapter we give a deterministic 22.5 approximation algorithm for the Asymmetric TSP when

the support graph of the solution of the Held-Karp LP relaxation (2.4.2) is a planar graph. Note that

this class of problems include Planar ATSP as a special case. Using similar techniques we provide

a O(
√
γ log γ) approximation when the support graph is embeddable on an orientable surface of

genus γ. But in this chapter we only include the planar case and we refer an interested reader to

[OS11]. Very recently, Erickson and Sidiropoulos [ES13] improved the later result and designed an

O(log γ/ log log γ) approximation for instances where the support graph is embeddable on an any

surface of genus γ.

The results of this chapter are based on a joint work with Amin Saberi [OS11].

5.1 Introduction

In this chapter we design a constant factor approximation for Asymmetric TSP on solutions x of

Held-Karp relaxation that can be embedded on a plane. By Theorem 4.2.2 we only need to find a

(α, s) thin tree for constants α, s.

In this chapter, for the sake of clarity, we do not work with fractional graphs. Instead, we

multiply all fractions xe of a feasible solution x of Held-Karp relaxation by a large integer to make

them integral So, we study integral multi-graphs with loops and parallel edges. Unless otherwise

specified, by a graph we mean a multi-graph. We use the following adopted definition of a thin tree

with respect to a graph G.

Definition 5.1.1. A subset F ⊆ E is α-thin with respect to G, if for any set U ⊂ V ,

|F ∩ (U,U)| ≤ α|(U,U)|,

One of the main difficulties in finding a thin spanning tree is that we do not know any polynomial

112
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size certificate, nor do we know a polynomial time verifier for measuring the thinness of a given tree

T with respect to an arbitrary graph G. The best approximation algorithm for measuring the

thinness of a tree T , that we are aware of, can be achieved by a reduction to the non-uniform

sparsest cut problem (see Section 7.7 for background on the non-uniform sparsest cut problem). If

we request a demand 1 between the endpoints of each edge of T , then the thinness of a tree T with

respect to G is exactly the value of the optimum of the non-uniform sparsest cut problem on G with

demand graph T . Since the current best approximation algorithm for the non-uniform sparsest cut

problem [ALN08] only gives an Õ(
√

log n) approximation, this reduction only gives an O(
√

log n)

approximation of the thinness of T .

It turns out that if G is a planar graph then we can measure the thinness of any tree T in

polynomial time. Because of the duality of cuts and cycles [Whi32] it is sufficient to measure the

thinness of dual of T , T ∗, with respect to cycles of the dual graph G∗, i.e., find a cycle C in G∗ such

that |T ∗∩C|/|C| is minimized. The latter problem can be solved efficiently by finding the minimum

mean weight cycle in G∗ where each edge of T ∗ has weight 1 and the rest of edges have weight 0.

Because of above observation, finding a thin tree in a planar graph is significantly easier. Our

idea is to choose T based on a collection of edges such that the shortest path between their endpoints

in the dual graph is large. In Lemma 5.2.2 we show that this is a sufficient condition for measuring

the thinness of T . We can find this collection of edges by choosing middle edges of disjoint threads

in the dual graph G∗.

5.2 Constructing a thin-tree

Let G = (V,E) be a connected planar graph, and let G∗ be its geometric dual. The dual-girth of

G, denoted by g∗(G) is the length of the shortest cycle in G∗. The main result of this section is the

following lemma.

Lemma 5.2.1. A connected planar graph with dual-girth g∗ has a spanning tree with thinness 10
g∗ .

Furthermore, such a tree can be found in polynomial time.

We will prove this lemma in the rest of this section. First note that if g∗ = 1, the lemma holds

for trivial reasons. Therefore, without loss of generality assume that g∗ > 1. That implies that no

face of G can have two copies of an edge. In particular, G does not have any cut edge. (recall that

an edge e ∈ E is a cut edge of G− {e} is disconnected).

Define the distance of two edges in a graph to be the closest shortest path distance between any

pair of their endpoints. Our most basic tool for establishing the thinness of a tree T in G is to relate

it to the pairwise distance of its corresponding edges T ∗ in G∗. If G∗ does not have any short cycle

and all the edges of T ∗ are far apart in G∗, then T is a thin tree in G.
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Lemma 5.2.2. Let F be a set of edges in G and F ∗ be the corresponding edges in the dual. If for

some m ≤ g∗(G), the distance between each pair of edges in F ∗ is at least m, then F is 1
m -thin in

G.

Proof. Consider a cut S = (U,U) in G. Let us start by showing that S∗ is a collection of edge-disjoint

cycles C1, C2, . . . , Cl in G∗. This is because the number of edges from S∗ incident to a vertex v∗ in

G∗ is equal to the intersection of S with corresponding face of v∗ in G and that is an even number.

Otherwise, either that face contains two copies of an edge of S, or one could find a path P ⊆ E in

that face such that P ∩ S = ∅, while the endpoints of P are in different sides of the cut, which are

both impossible.

Because the distance of each pair of edges in F ∗ is at least m, F ∗ cannot have more than

max(1, blen(Ci)/mc) edges in Ci, for 1 ≤ i ≤ l where by len(Ci) we mean the number of edges in

Ci). Therefore,

|F ∗| ≤
l∑
i=1

max
{

1,
⌊ len(Ci)

m

⌋}
=

l∑
i=1

⌊ len(Ci)

m

⌋
≤ |S

∗|
m

.

Note that the equality holds by the assumption len(Ci) ≥ g∗ ≥ m. Thus the number of edges of F

in the cut (U,U) is no more than b|(U,U)|/mc and F is 1/m-thin.

Considering the above Lemma, our goal will be to find a set of edges in G∗ that are sufficiently far

apart. We will do this by finding long threads iteratively and selecting one edge from each thread.

A thread in a graph G is a maximal subgraph of G which is either

• a path whose internal vertices all have degree 2 in G and its endpoints have degree at least 2,

or

• a cycle in which all vertices except possibly one have degree 2.

Let us start by showing the existence of long threads.

Lemma 5.2.3. A planar graph with minimum degree 2 and girth g has a thread of length at least

g/5.

Proof. Let H be a graph satisfying the conditions of the theorem and H ′ be the graph obtained by

iteratively replacing the vertices of degree 2 in H with an edge. In other words, let H ′ be the graph

obtained by replacing every thread in H by an edge. We will show that H ′ has a cycle of length at

most 5. Then, it follows that that at least one of the edges of that cycle is obtained from a thread

of length at least g/5 in H.

It remains to show H ′ has a cycle of length at most 5. Let n′,m′, f ′ be the number of vertices,

edges and faces of H ′ respectively. Then by Euler formula,

n′ −m′ + f ′ = 2.
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Since by definition each vertex of H ′ has degree at least 3 we have m′ ≥ 3n′/2. So,

0 < n′ −m′ + f ′ ≤ −m′/3 + f ′,

and we get f ′ > m′/3. But since each edge of H ′ is included in exactly two faces, if all faces of H ′

have at least 6 edges, then 6f ′ ≤ 2m′. So, there must be a face with at most 5 edges, which means

the girth of H ′ is at most 5.

Now we are ready to describe our algorithm for finding a thin tree in a planar graph. Iteratively,

we find a thread P in the dual graph G∗ add its middle edge to a set F ∗ and remove all edges of P

from G∗. We return a spanning subgraph of the edges corresponding to F ∗ in G as a thin tree (see

Algorithm 7 for details). Since g∗(G) never decreases in the entire run of the algorithm, by the above

lemma, we can always find a thread of length at least g∗/10 in G∗, so the algorithm terminates in

O(|E(G)|) steps.

Algorithm 7 An Algorithm for Finding a Thin Tree in a Planar Graph

Input: A connected planar graph G and its dual G∗ with girth g∗.
Output: A spanning tree T with thinness at most g∗/10.
1: F ∗ ← ∅
2: while there exists an edge in G∗ do
3: Find a thread P of length at least g∗/5 in G∗.
4: Add the middle edge of P to F ∗. If P is a cycle, define its middle edge to be the one with

the maximum distance from the large degree vertex.
5: Remove all edges of P from G∗.
6: end while

return A spanning tree T ⊆ F , where F is the set of edges corresponding to F ∗ in G.

The algorithm has an equivalent description in terms of the original graph G. Roughly speaking,

in each iteration, we find a collection of at least g∗/5 consecutive parallel edges in G, we add the

middle edge of that collection to F then we contract the end points. Observe that the planar

embedding is crucial in the execution of this procedure because it provides a notion of a middle

edge.

It is also worth noting that |F | may end up being bigger than |V (G)| − 1 in an execution of

Algorithm 7. This is because a thread in G∗ may be equivalent to a collection of parallel loops. The

next lemma immediately proves Lemma 5.2.1.

Lemma 5.2.4. The set F computed in Algorithm 7 is connected and spanning in G. Furthermore,

the pairwise distance of the edges of F ∗ in G∗ is at least g∗/10.

Proof. We start by proving F is connected in G. First, we show that Algorithm 7 selects at least

one edge from each cycle of G∗. For any cycle C in G∗, observe that the first thread P selected

in step 3 of Algorithm 7 that has a non-empty intersection with C must lie completely in C (i.e.
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P ⊂ C). Therefore the middle edge of P , which is an edge of C, is added to F ∗. Now, as we argued

in the proof of Lemma 5.2.2, the dual of any cut (U,U) in G, is a union of edge disjoint cycles, so

F ∗ has at least one edge from one of these cycles, and F has at least one edge from (U,U).

It remains to show that the pairwise distance of all edges of F ∗ in G∗ is at least g∗/10. First,

observe that after adding a middle edge e of a thread P to F ∗, the algorithm immediately removes

all the edges that are of distance less than g∗/10 from e because they are all in P . Although each

iteration of the while loop may increase the distance of some pairs of edges, it never increases the

distance of two edges that are closer than g∗/10. Therefore, the distance of any pairs of edges that

are closer than g∗/10 remains the same until one of them is deleted.

5.3 Thin trees, Goddyn’s conjecture and ATSP

The algorithm presented in Section 5.2 imply the following result:

Theorem 5.3.1. Any k-edge connected planar graph G = (V,E) has a 10
k -thin spanning tree. Such

a spanning tree can be found in polynomial time.

Proof. A set of edges S ⊆ E is a minimal cut if there is no proper subset of S that also defines a

cut in G. Recall that in the proof of Lemma 5.2.2 we show that the dual of any cut of G is a union

of edge disjoint cycle. Whitney [Whi32] the dual of any minimal cut is exactly one cycle, and vice

versa, the dual of a cycle is a minimal cut. By Whitney’s theorem, g∗, the girth of G∗ is at least k.

So, by Lemma 5.2.1, Algorithm 7 finds a 10/k-thin spanning tree.

An equivalent way to state the above theorem is that there exists a function f such that, for any

ε > 0, any f(ε)-edge connected planar graph G has an ε-thin spanning tree. This can proves the

following conjecture of Goddyn [God04] for planar graphs.

Conjecture 5.3.2 (Goddyn [God04]). There exists a function f(ε) such that, for any 0 < ε < 1,

every f(ε)-edge connected graph has an ε-thin spanning tree.

Goddyn’s conjecture is intimately related to ATSP and the integrality gap of Held-Karp relax-

ation. To make this precise, we generalize Theorem 4.2.2 and we show that if we can find an α/k-thin

tree in any k-edge connected graph, then we can design an O(α) approximation algorithm for ATSP.

Proposition 5.3.3. Suppose there is a non-decreasing function f(k) such that any k-edge connected

graph contains a f(k)
k -thin spanning tree. Given, a k-edge connected graph G = (V,E), for any cost

function c : E → R+, G has a 2f(k)
k -spanning tree T such that c(T ) ≤ 2f(k)

k · c(E).

Furthermore, if there is a polynomial time algorithm for finding a f(k)/k-thin tree in any k-edge

connected graph, then we can find a 2f(k)
k thin tree of cost c(T ) ≤ 2f(k)

k · c(E) in polynomial time.
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Proof. Let G0 := G and select a f(k)
k -thin spanning tree T0 in G0, and remove its edges. Call this

new graph G1. Note that each cut (U,U) of G0 loses at most f(k)
k |G0(U,U)| of its edges. As the

size of the minimum cut in G0 is k, G1 will be (k − f(k))-edge connected.

Similarly, find a
f(k − f(k))

k − f(k)
≤ f(k)

k − f(k)

thin spanning tree T1 in G1. The inequality holds by the monotonicity assumption on f(k). Remove

the edges of T1 to obtain a (k − 2f(k))-edge connected graph G2. Repeat on G2 to obtain l =

dk/(2f(k))e spanning trees T0, . . . , Tl−1, where for each i, Ti is a f(k)
k−if(k) -thin spanning tree of the

(k − if(k))-edge connected graph Gi.

Because Gi is a spanning subgraph of G0, any spanning and thin tree of Gi will be spanning and

thin in G0. Moreover, since 0 ≤ i < l and

f(k)

k − if(k)
≤ 2f(k)

k
,

each Ti is a 2f(k)
k -thin spanning tree in G0. Among the selected trees find the one with the smallest

cost. Then, by an averaging argument c(Tj) ≤ 2f(k) · c(E)/k.

Now, we are ready to prove the main theorem of this chapter.

Theorem 5.3.4. Given a feasible point x of the Held-Karp LP (2.4.2), embedded the plane, there

is a polynomial-time algorithm that finds a hamiltonian cycle with a cost 30(1 +O(1/n)) of c(x).

Proof. Let z be a fractional spanning tree as defined in (4.1.1). Construct a graph H by placing

n3ze parallel edges between the endpoints of each edge e where ze > 0 (if ze is not an integer we

just round n3ze down to the nearest integer). Observe that for any U ⊆ V ,

n3z(δ(U))− n2 ≤ |H(U,U)|n3z(δ(U)). (5.3.1)

Since z(δ(U)) ≥ 2(1−1/n) for any U ⊆ V , H is k = 2n3−3n2 edge connected. By Theorem 5.3.1

and Proposition 5.3.3 we can find a tree T in H that is 20/k-thin such that c(T ) ≤ 20c(E(H))/k.

So, by (5.3.1), for any U ⊆ V ,

|T ∩H(U,U)| ≤ 20

k
|H(U,U)| ≤ 20n3

k
z(δ(U) ≤ 10

1− 2/n)
z(δ(U)).

So, T is (20(1 + O(1/n)), 10(1 + O(1/n)))-thin with respect to z. Therefore, by Theorem 4.2.2 we

can find a tour of cost at most 30(1 +O(1/n)) of c(x).

A slightly better optimization of parameters lead to a 22.5 approximation algorithm for ATSP.

Instead of the best of k/20 disjoint thin trees we can consider the cost when choosing a thin tree in
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Algorithm 6. In particular, instead of including a middle edge of a thread P in a thine tree T (see

step 3 of Algorithm 6) we choose the edge of smallest cost among the |P |/3 middle edges of P , i.e.,

the edge of smallest cost among edges of P of distance |P |/3 from the endpoints of P .

It is worth noting that the genus of an extreme point solution of Held-Karp relaxation instance

with n vertices can be as large as Ω(n). In fact, for any odd integer k, it is possible to construct

an extreme point on k2 vertices that has the complete graph with k vertices as a minor. Such an

extreme point can be obtained by the same construction as Carr and Vempala [CV00, Theorem 3.5]

applied to a complete graph with k vertices.

An argument similar to the proof of above theorem shows that Goddyn’s conjecture implies

constant integrality gap of the Held-Karp relaxation of ATSP. Furthermore, an algorithmic proof of

Goddyn’s conjecture implies a constant factor approximation algorithm for ATSP.

Corollary 5.3.5. If Goddyn’s conjecture holds for some function f(ε) = O(1/ε), then the integrality

gap of Held-Karp relaxation is bounded from above by a constant.

5.3.1 Nowhere-zero flows and Jaeger’s conjecture

Goddyn’s conjecture was inspired by the study of nowhere-zero flows and in particular in attempting

Jaeger’s conjecture [Jae84]. Here, we just state the Jaeger’s conjecture and refer the reader to

Seymour [Sey95] for more information.

Conjecture 5.3.6 (Jaeger [Jae84]). For any 4k-edge connected G there is an orientation of G such

that for any S ⊂ V (G),

(k − 1)|δ−(S)| ≤ k|δ+(S)| ≤ (k + 1)|δ−(S)|.

Jaeger’s conjecture has not been proved for any positive integer k yet. For k = 1, this is Tutte’s

3-flow conjecture and is proved only for planar graphs. Goddyn’s conjecture implies a weaker version

of Jaeger’s conjecture in which 4k is replaced by an arbitrary function of k. Even this version is still

open [GHGG99].

Previously, Jaeger’s conjecture was proved on planar or bounded genus graphs (see e.g. [Zha02])

Since Goddyn’s conjecture implies Jaeger’s conjecture with the same parameters, our result can be

seen as a strengthening of these results for surfaces with orientable genus.



www.manaraa.com

Chapter 6

Symmetric TSP

In this chapter, for some positive constant ε0, we design a polynomial time ( 3
2−ε0)-approximation al-

gorithm for graphic TSP. Our result improves on the 3
2 -approximation algorithm due to Christofides [Chr76]

for this special case. A corollary of our analysis is that the integrality gap of the Held-Karp LP

relaxation (2.4.1) is also strictly below 3
2 on graph metrics

Since the first appearance of our work, several groups of people studied this problem and improved

our approximation ratio. Mömke and Svensson [MS11] came up with a beautiful combinatorial

algorithm for graphic TSP with an approximation ratio of 1.461. This approximation ratio was later

improved by Mucha [Muc12] to 13
9 ≈ 1.444. The latest work of Sebö and Vygen [SV12] improved

the approximation factor to 1.4.

The results of this section are based on a joint work with Amin Saberi and Mohit Singh [OSS11].

6.1 Introduction

Recall that in an instance of graphic TSP we are given a graph G0 = (V,E0), and a non-negative

symmetric cost function c : V × V → R+ satisfying triangle inequality such that c(e) = 1 for all

e ∈ E0, and we want to find the shortest tour that visits every vertex at least once. In this chapter

we design a polynomial time algorithm that beats the Christofides’ 3/2-approximation algorithm

on graph metrics. We indeed solve a slightly more general case in which the cost of the edges of

G0 are in an interval [1,Υ] for any constant Υ > 1. We remark that none of the follow up results

[MS11, SV12, Muc12] claim to beat Christofides’ 3/2 approximation in this slightly more general

case.

Theorem 6.1.1. For a universal constant ε0 > 0 and any Υ ≥ 1, there exists a randomized

polynomial time algorithm for any given graph G0 = (V,E0) and a metric c : V ×V → R+ such that

c(e) ∈ [1,Υ] for any edge e ∈ E0, finds a tour of expected cost at most 1.5− ε0/Υ3 of the optimum.

119
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Note that one can obtain a high probability result from the above theorem by running log(n) copies of

the algorithm independently. A corollary of the analysis of the above theorem is that the integrality

gap of the natural linear programming relaxation (due to Held and Karp [HK70]) is also strictly

below 3
2 on graph metrics.

As we mentioned in Section 1.1, our algorithm is designed for the general weighted version of

TSP, but our analysis works for the unweighted version, or graphic TSP. In this section we describe

our algorithm in its full generality, and later we discuss how we take advantage of the additional

assumption that c(., .) is a graphic metric in our analysis.

Our algorithm for TSP is very similar to Algorithm 6. First, we find an optimal extreme point

solution x∗ of Held-Karp LP relaxation (2.4.1), and we let z∗ = (1 − 1/n)x∗. Then, we find a

λ-random spanning tree distribution that (approximately) preserves marginals of z∗, we sample T ∗

from µ, and finally we add the minimum cost Eulerian augmentation to T ∗ (see Algorithm 8 for

details). Note that similar to Algorithm 6 we require x∗ to be an extreme point solution to obtain

a lower bound of 2−O(n logn) on mine∈E z
∗
e . We need this lower bound to compute an approximate

maximum entropy distribution that preserves the marginals of z∗ as we described in Theorem 3.1.3.

Algorithm 8 An Algorithm for Symmetric TSP in General Metrics

Find an optimal extreme point solution x∗ of LP (2.4.1) and let z∗ = (1− 1/n)x∗ be a fractional
spanning tree and let G = (V,E) be the support graph of x∗.
Use Theorem 3.1.3 to find weights λ : E → R+ such that the λ-random spanning tree distribution,
µ, approximates the marginal probabilities imposed by z∗, i.e., for all e ∈ E,

Pµ [e ∈ T ] ≤ (1 + 1/n3)z∗e

Sample a tree T ∗ from µ.
Let O denote the set of odd-degree nodes in T ∗. Find the minimum cost O-join J∗.

return Shortcut multigraph J∗ ∪ T ∗ and output the resulting Hamiltonian cycle.

We can start analyzing above algorithm similar to Section 4.1. The expected cost of a tree

sampled based on the maximum entropy rounding by sampling method is at most c(x∗). So, we just

need to upper bound the cost of the minimum Eulerian augmentation - in this case, the minimum

cost matching on the odd degree vertices of the tree, by c(x∗) · (1/2− ε) for some universal constant

ε. Currently, we are not aware of any such a proof, but for all instances of TSP that we are aware

of, the approximation factor of the above algorithm is significantly better than 3/2. We conjecture

that the above algorithm beats Christofides’ Algorithm 4 in the worst case for general version of

TSP.

Conjecture 6.1.2. For a universal constant ε > 0, Algorithm 8 is a 3
2 − ε approximation algorithm

for the traveling salesman problem.

We remark that we are not aware of any instance of TSP where the approximation ratio of
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Algorithm 8 is worse than 4/3. In Example 3.1.2 we showed a family of examples where the approx-

imation ratio of this algorithm is 5/4. Recall that in Subsection 2.4.1 we show that the integrality

gap of the Held-Karp LP relaxation (2.4.1) is at least 4/3, so any analysis that uses c(x∗) as a lower

bound on the value of the optimum tour cannot prove a factor better than 4/3.

In this chapter, we analyze Algorithm 8 only for graphical metrics and after a slight modification:

If x∗ is nearly integral, then we simply solve the problem by a greedy deterministic algorithm that

has an approximation ratio close to 4
3 . More specifically, we say an edge e ∈ E is nearly integral

if x∗e ≥ 1 − γ, where γ > 0 is a constant. We say x is a nearly integral solution of LP (2.4.1) if

i.e., |{e : xe ≥ 1 − γ}| ≥ (1 − ε2)n for a constant ε2 > 0. If x∗ is a nearly integral solution of LP

(2.4.1), we let T ∗ be the minimum cost spanning tree that contains as many nearly integral edges as

possible. Then, we simply add minimum O-join on odd-degree vertices of T ∗. When x∗ is not nearly

integral, we follow Algorithm 8. The details of the final algorithm are described in Algorithm 9.

Algorithm 9 Improved Approximation Algorithm for Graphic TSP

1: Find an optimal solution x∗ of LP (2.4.1) and let z∗ = (1− 1/n)x∗ be a fractional spanning tree
and let G = (V,E) be the support graph of x∗.

2: if x∗ contains (1− ε2)n edges of fraction greater than 1− γ then
3: Let S = {e : x∗e ≥ 1 − γ}, and let T ∗ be a minimum cost spanning tree with respect to the

cost function c(.) among all trees T such that |T ∩ S| = rank(S).
4: else
5: Use Theorem 3.1.3 to find weights λ : E → R+ such that the λ-random spanning tree

distribution, µ, approximates the marginal probabilities imposed by z∗, i.e., for all e ∈ E,

Pµ [e ∈ T ] ≤ (1 + 1/n3)z∗e

6: Sample a tree T ∗ from µ.
7: end if
8: Let O denotes the set of odd-degree vertices of T ∗. Find the minimum cost O-join J∗.

return Shortcut multigraph J∗ ∪ T ∗ and output the resulting Hamiltonian cycle.

We remark that although µ only approximately preserves the marginal probability of z∗ in the

above algorithm, for any set S ⊆ E, Eµ [|T ∩ S|]− z(S) = O(1/n2). Letting n be sufficiently larger

than the inverse of the constants that we consider throughout this chapter, for the sake of brevity,

we can ignore this difference, and we assume µ preserves the marginal vector z∗ exactly.

Our analysis builds on polyhedral structure of the O-join polytope, the cactus-like structure of

near minimum cuts that we discussed in Section 3.2, and locally Hamiltonian properties of λ-random

spanning trees that we discussed in Section 3.3.

6.2 The Structure Theorem

We consider two cases. Case 1 is the simpler case where we assume x∗ is nearly integral.
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Figure 6.2.1: A set U ⊆ V has an odd number of odd degree vertices of a tree T if and only if
|T ∩ δ(U)| is odd. Odd degree vertices are colored with red.

Case 1: x∗ is nearly integral. We start with the simple case that x∗ is nearly integral, and we

show a simple polyhedral argument bounds the cost of the tree T ∗ and the O-join J∗. The following

lemma bounds c(T ∗) + c(J∗).

Lemma 6.2.1. Let x be a fractional solution of LP (2.4.1), and S := {e : xe ≥ 1 − γ} for

γ < 1/3. Let T ∗ be a minimum cost spanning tree with respect to c(.) among all trees T such

that |T ∩ S| = rank(S). Also, let J∗ be a minimum cost O-join on odd degree vertices of T ∗. If

(1− ε2)n ≤ |S|, then

c(T ∗) + c(J∗) ≤ c(x)
(4

3
+ 2γ + 2Υ(γ + ε2)

)
Proof. First, since γ < 1/3, and x(δ(v)) = 2 for all vertices, each vertex is adjacent to at most two

edges of S. So, S is a collection of disjoint paths and cycles. Furthermore, since x(δ(U)) ≥ 2 for

any set U ⊂ V , the length of each cycle of S is at least 1/γ. Since rank(P ) = |P | for any path P

and rank(C) = |C| − 1 for any cycle C, rank(S) ≥ |S|(1− γ). So,

|T ∗ − S| ≤ n− 1− rank(S) ≤ n− |S|(1− γ) ≤ n− (1− ε2)(1− γ)n ≤ n(ε2 + γ). (6.2.1)

Second, we bound the cost of J∗-join by constructing a fractional solution to O-join polytope

(2.4.4) and using Proposition 2.4.2. For any edge e ∈ E, let

ye =


xe

3(1−γ) if e ∈ S ∩ T ∗,

1 if e ∈ T ∗ − S,

xe otherwise.

(6.2.2)

First, we show that y is a feasible solution of LP (2.4.4). Let U ⊆ V such that |U ∩ O| is odd.

We want to show that y(δ(U)) ≥ 1. Observe that, |U ∩ O| is odd if and only if |δ(U) ∩ T ∗| is odd

(see Figure 6.2.1 for an example). If there is an edge e ∈ (T ∗ − S) ∩ δ(U), then y(δ(U)) ≥ ye ≥ 1

and the constraint is satisfied. Otherwise, we have δ(U) ∩ T ∗ ⊆ S. Since |δ(U) ∩ T ∗|| is odd, δ(U)
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must have an odd number of edges of S ∩ T ∗. If |S ∩ T ∗ ∩ δ(U)| = 1, then

y(δ(U)) ≥ y(δ(U)− (S ∩ T ∗)) ≥ x(δ(U)− (S ∩ T ∗)) ≥ 1

Otherwise, |S ∩ T ∗ ∩ δ(U)| ≥ 3, and

y(δ(U)) ≥ y(δ(U) ∩ (S ∩ T ∗)) ≥ x(δ(U) ∩ S ∩ T ∗)
3(1− γ)

≥ 3
1− γ

3(1− γ)
= 1

Therefore, y is a feasible solution of LP (2.4.4).

By Proposition 2.4.2, c(y) ≥ c(J∗). So, it is sufficient to upper bound c(T ∗) + c(y),

c(T ∗) + c(y) ≤ 1

1− γ
·
∑

e∈T∗∩S
c(e)xe

( 1

1− γ
+

1

3(1− γ)

)
+ 2c(T ∗ − S) + c(x(E − T ∗)

≤ 4c(x(S))

3(1− γ)
+ 2|T ∗ − S| ·Υ + c(x(E − S))

≤ 4c(x)

3(1− γ)
+ 2n(ε2 + γ) ·Υ ≤ c(x)

(4

3
+ 2γ + 2Υ(γ + ε2)

)
.

The first inequality follows by (6.2.2) and the definition of T ∗. The second inequality follows since

the cost of each edge of T ∗ − S is at most Υ. This is because c(e) ≤ Υ for each edge e ∈ E0 and G0

is connected. The third inequality follows by (6.2.1), and the last inequality follows since γ < 1/3

and c(x) ≥ n.

We remark that the above construction of the fractional O-join is similar to a construction by

Monma, Munson and Pulleyblank [MMP90].

Case 2: x∗ is not nearly integral This is the more interesting case. Let x∗ be an optimal

solution of Held-Karp relaxation that is not nearly integral. Let µ be a λ-random spanning tree

distribution that approximately preserves marginals in z∗, and let T be a sample from µ. As we

proved in Section 3.1, E [c(T )] ≤ c(x∗). So, Let J be a minimum cost O-join for T . it is sufficient to

show that

E [c(J)] ≤ (1/2− ε0/Υ3)c(x∗).

First, we recall that by Wolsy’s argument [Wol80], the vector x∗

2 is always a feasible fractional

solution to LP (2.4.4) for any set O ⊆ V (see Section 2.5 for more details). This is because by

feasibility of x∗, x∗(δ(U)) ≥ 1 for any set U . To bound c(J), it is sufficient to construct a feasible

solution of smaller cost for the O-join polytope, when O is the set of odd degree vertices of the

sampled spanning tree T . In other words, we want to construct a vector y such that y(δ(U)) ≥ 1

for any set U where |δ(U) ∩ T | is odd (see Figure 6.2.1). Note that the vector y can be a function

of x∗ and T . So, we will choose y with a promise that E [c(y)] ≤ (1/2 − ε0/Υ3)c(x∗), where the
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expectation is over the randomness of T .

We say a cut (U,U) is even with respect to a tree T if |T ∩ δ(U)| is even and it is odd otherwise.

For a sufficiently small constant η > 0 that we fix later, consider the (1 + η)-near minimum cuts of

G = (V,E,x∗). We say an edge e is even with respect to a tree T if any (1+η)-near minimum cut that

contains e is even with respect to T , i.e., for all U ⊂ V such that e ∈ δ(U) and x∗(δ(U)) ≤ 2(1 + δ),

|T ∩ δ(U)| is even. Given a tree T , we let

ye =


x∗e

2(1+η) if e is even with respect to T

x∗e
2 otherwise.

Observe that such a vector y is a feasible solution of LP (2.4.4) when O is the odd degree vertices

of T .

So, it is enough to find a tree T for which the cost of the even edges is large. Let E(e) be the

event that an edge e ∈ E is even with respect to T when T is sampled from the distribution µ. We

say e is good if the probability of this event is bounded away from zero by some absolute constant.

More precisely, e is good if for a fixed constant ρ > 0,

P [E(e)] = P
[
∃(U,U) : e ∈ δ(U) and x∗(δ(U)) ≤ 2(1 + η) and |T ∩ δ(U)| is odd

]
≤ 1− ρ.

Let E∗ ⊆ E be the set of good edges. It follows that

E [c(y)] ≤ c(x∗)/2− ρ · c(x∗(E∗)). (6.2.3)

To beat the Christofides’ 1.5 approximation algorithm it is sufficient to show c(x∗(E∗)) is a constant

fraction of c(x∗(E)). Let us give some examples.

Complete graph. Let G be a complete graph and xe = xe′ for any two edges e, e′ ∈ E. Then,

the only near minimum cuts of G are the degree cuts. So an edge e is even if both of its

endpoints have an even degree in a tree T ∼ µ. By Proposition 3.3.2 this happens with

constant probability. So, in this case every edge of G is good.

Hamiltonian cycle. Let G be a cycle of length n, i.e., xe = 1 for each edge of the cycle. Then, all

spanning trees of G are Hamiltonian paths and each of them has a probability 1/n in µ. Now

for any tree T in the support of µ each edge e is contained in at least one odd minimum cut

(see Figure 6.2.2). So, G does not have any good edges.

Because of the above example we do not expect that all edges of G are good. In particular, G

may not have any good edges at all. Note that by Proposition 2.9.16, T contains exactly two edges

in any near minimum cut of G with constant probability. Let us for a moment assume that the

events that a number of near minimum cuts (U1, U1), . . . , (Uk, Uk) are even with respect to T ∼ µ
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Figure 6.2.2: Consider the Hamiltonian cycle shown at the left. In any spanning tree of this graph
all edges are contained in at least one odd minimum cut. The dashed blue arcs in the right shows
the odd near minimum cuts for one spanning tree.

are independent. Then, Proposition 2.9.16 implies that any edge that is contained in a constant

number of near minimum cuts is good. Although the independence assumption does not hold in

general, it gives us a lead for finding good edges.

We find the good edge among edges of G that are contained only in a constant number of

near minimum cuts. Now, one may ask why should G have any edges in a constant number of

near minimum cuts? After all, if G is a Hamiltonian cycle, then every edge is contained in n − 1

minimum cuts. To prove the existence of edges in a constant number of near minimum cuts we use

the machinery that we developed in Section 3.2. Let F be the collection of all (1+η)-near minimum

cuts, and let Large(τ) = ∪C:|ψ(C)|≥τψ(C) be the multi-set of all atoms of large cut classes where

τ2 = 1/(20
√
η) (see Definition 3.2.20 for the definition of a large cut class). By Lemma 3.2.21,

if |Large(τ)| ≥ (1 − ε)n for a constant ε that we will fix later, then there is a set E′ ⊆ E such

that |E′| ≥ (1 − 14
√
η − 17ε)n and for any edge e ∈ E′, xe ≥ 1 − 3

√
η. Now, let γ = 3

√
η and

ε2 := 14
√
η + 17ε. Since x∗ is not nearly integral, we must have |Large(τ)| < (1 − ε)n. Therefore,

by Lemma 3.2.23 there is a set E′Small ⊆ E such that x∗(E′Small) ≥ εn/4, and each edge e ∈ E′Small

is contained in at most O(τ2/ε) near minimum cuts.

So, a constant fraction of edges are contained in a constant number of near minimum cuts. Now, if

the independence assumption holds, i.e., if for any number of near minimum cuts (U1, U1), . . . , (Uk, Uk)

the events that these cuts are even with respect to random tree T are independent, then all edges

of E′Small are good, and we get

c(x∗(E′Small)) ≥ εn/4 ≥ ε · c(x∗)/8Υ,

where the last inequality holds since c(x∗) ≤ 2Υ · n and we would be done with the proof of

Theorem 6.1.1 using (6.2.3).

Unfortunately, the above independence assumption does not hold in general (recall that in Ex-

ample 3.3.1 we show that even an edge that is contained in only two near minimum cuts is not

necessarily good). So, instead of showing that all edges of E′Small are good, we show a constant

fraction of edges in E′Small are good. This is our main structure theorem.
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Theorem 6.2.2 (Structure Theorem). Let x be a feasible solution of LP (2.4.1), z = (1−1/n)x,

and let µ be the λ-random spanning tree distribution preserving marginals of z. For τ2 = 1/(20η)

and ε ≥ 1200/τ if Large(τ) < (1 − ε)n, then for ε1 = ε/108 and ρ = ε2/1012 there exists a set

E∗ ⊂ E such that x(E∗) ≥ ε1n, and for all e ∈ E∗, P [E(e)] ≥ ρ.

We note that the Structure Theorem is valid for all feasible solutions to the Held-Karp relaxation.

We also remark that we have not tried to optimize the constants.

Now, we are ready to prove Theorem 6.1.1 using the above theorem.

Proof of Theorem 6.1.1. The proof is just a summary of the above discussion. Let η = 10−13/Υ2.

Let τ2 = 1/(20η), ε = 1200/τ as defined in the Structure Theorem. Let ε0 = ε1ηρΥ
2

4(1+η) , γ = 3
√
η, ε2 =

14
√
η + 17ε. Note that ε0 is a universal constant. Let x∗ be an optimal solution of Held-Karp LP

relaxation (2.4.1), and let µ be a λ-random spanning tree distribution that (approximately) preserves

the marginals in (1− 1/n)x∗.

Let G = (V,E,x∗) be the support graph of x∗ and If |Large(τ)| ≥ (1−ε)n, then by Lemma 3.2.21

there is a set E′ ⊆ E such that |E′| ≥ (1 − ε2)n and x∗e ≥ 1 − γ for any e ∈ E′. By Lemma 6.2.1,

the cost of the tour computed in Algorithm 9 is at most

c(x∗)(4/3+2γ+2Υ(γ+ε2)) ≤ 4

3
c(x∗)+Υ·c(x∗)(40

√
η+34ε) ≤ 4

3
c(x∗)+Υc(x∗)(200000

√
η) ≤ 1.49c(x∗).

Now assume Large(τ) < (1 − ε)n. In this case we use the Structure theorem. We provide a

fractional solution to LP (2.4.4). For any edge e ∈ E if e is contained in at least one odd (1 + η)

near minimum cut we let ye = x∗e/2 and otherwise we let ye = x∗e/2(1 + η). It is easy to see that y

is indeed a fractional solution of (2.4.4). By Theorem 6.2.2,

E [c(y)] ≤ c(x∗)

2
−
∑
e∈E

x∗ec(e)P [E(e)]

(
1

2
− 1

2(1 + η)

)
≤ c(x∗)

2
− η

2(1 + η)

∑
e∈E∗

x∗eρ

≤ c(x∗)(
1

2
− ε1ηρ

4Υ(1 + η)
) ≤ c(x∗)(1/2− ε0/Υ3).

The second inequality holds because c(e) ≥ 1 for all e ∈ E, and the last one because c(x∗) ≤ 2Υn.

By Proposition 2.4.2, E [c(y)] ≤ E [c(J∗)]. Therefore, the expected cost of the Eulerian tour in the

output of Algorithm 9 is at most c(x∗)(1.5− ε0/Υ3).

In the rest of this chapter we prove the structure theorem. As a final remark we would like to

mention that even the strong independence assumption, i.e., any constant number of near minimum

cuts are even simultaneously with a constant probability, is not sufficient to prove Conjecture 6.1.2.

This is because Lemma 3.2.23 only lower bounds x∗(E′Small) and not c(x∗(E′Small)). In other words,

it can be the case that although x∗(E′Small) = Ω(n), c(x∗(E′Small)) = o(c(x∗)), so our gain in defining
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ye =
x∗e

2(1+η) instead of ye = x∗e/2 for e ∈ E′Small is not comparable with c(x∗). So, we think proving

Conjecture 6.1.2 requires a different approach for upper bounding E [c(y)].

6.3 In Search of Good Edges

In the rest of this chapter we let x be any feasible solution of Held-Karp relaxation (2.4.1), z =

(1− 1/n)x and µ be a λ-random spanning tree distribution preserving the marginals of z. We let n

to be sufficiently larger than the inverse of the constants that we consider. So, for the simplicity of

notation we do not differentiate between the vectors x, z when we are dealing with o(n) of edges of

G. We also let G = (V,E,x) be the support graph of x.

In Subsection 3.2.2 we proved that if Large(τ) < (1 − ε)n for a constant ε > 0 then there is a

set ESmall of edges that are not contained in any of the large cut classes, and x(ESmall) = Ω(n). In

Example 3.3.1 we show that even an edge that is contained in only two near minimum cuts is not

necessarily good, so we do not expect that all of the edges of ESmall are good. In this section we

identify three types of good edges inside ESmall, and we show that they contribute to a constant

fraction of all edges of G.

The first of types of good edges that we consider are “trivial edges”.

Definition 6.3.1 (Trivial Edge). We call an edge e ∈ E trivial if it is in only two near minimum

cuts, which are the degree constraint of its endpoints.

In Proposition 3.3.2 we showed that if xe is bounded away from 1/2 with constant probability

both of its endpoints have an even degree. So, if e is a trivial edge and xe is bounded away from

1/2, e is good. If e is a trivial edge and xe is very close to 1/2, then e is not necessarily good as

we discussed in Example 3.3.1. But, by Lemma 3.3.7, if e is adjacent to another trivial half edge at

least one of them is good. This is summarized in the following proposition.

Proposition 6.3.2. Any trivial edge e such that xe <
1
2−

1
1000 or xe >

1
2 + 1

1000 is good. Furthermore,

of any pair of adjacent trivial edges, one of them is good.

Recall that a cut class C is trivial if it has exactly two atoms and one of them is a singleton. Also

recall that an edge e is contained in a cut class C if its endpoints are in distinct atoms of this cut

class. The second type of good edges are inside edges.

Definition 6.3.3 (Inside Edge). An edge e = {u, v} is an inside edge of a non-trivial small cut

class C if C is the only non-trivial cut class that contains e, and atoms of C containing u and v are

singletons.

We say a cut class C is cyclic if 20|ψ(C)|2 ≤ 1/η. In the next any inside edge of a cyclic cut class

is good.
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Proposition 6.3.4. For any inside edge e = {u, v} of a cut class C that is not the root of Γ, if

20|ψ(C)|2 ≤ 1/η, then

P [E(e)] ≥ 1

2000
.

The above proposition is proved in Section 6.4.

For many of the possible feasible solutions of LP (2.4.1) the sum of the fractions of good trivial

and inside edges covered in the above lemmas add up to Ω(n). Unfortunately, there are graphs that

do not have any trivial or inside edges, even though they do not have any large cut classes. Consider

the fractional LP solution shown in the left of Figure 6.3.3. This graph does not have any inside

edges and only the edges {1, 2} and {n−1, n} are trivial. So, we find to study a third group of good

edges that we call “thread edges”.
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Figure 6.3.3: In the left we have drawn a feasible solution of Held-Karp relaxation (2.4.1). The graph
is constructed by connecting each pair of vertices i, j by an edge x{i,j} := 2−|i−j|, unless i or j = 1,n.
For any 2 ≤ j ≤ n− 1, x{1,j} = 2j−2, and x{j,n} = 2n−j−1. Also, x{1,n} = 2−n−3. In the middle we
illustrated the tree hierarchy of the cut classes, Here, C2, C3, . . . , Cn−2 are the non-trivial cut classes,
and the rest are trivial. Each cut class Ci contains two atoms ψ(Ci) := {{1, 2, . . . , i}, 1, . . . , i}, we
abused notation and used 1, . . . , i instead of {1, . . . , i} (see Section 2.6 for background on the tree
hierarchy and cactus representation). In the right we show the tree of cut classes Γ. Note that Γ
contains only the non-trivial cut classes. Cn/2 is chosen to be the root, and the tree is made of two
long threads. All of the edges of the graph except {1, 2}, {n − 1, n}, are non-trivial, and the graph
does not contain any inside edges.

Before defining thread edges we need to define a few terms. We define a rooted tree Γ as follows.



www.manaraa.com

CHAPTER 6. SYMMETRIC TSP 129

The nodes of this tree are non-trivial cut classes of 1 + η near minimum cuts of G. Recall that in

Lemma 2.6.13 we show that in all cut classes, except possibly one, say Cr, there is an atom with

more than n/2 vertices. If Cr does not exist we let it be any proper cut class if one exist and if not

we let it be any non-trivial non-proper cut class.

We root the tree Γ at Cr. Now for each cut class C 6= Cr we need to define its father in Γ. By

Lemma 2.6.3 there are unique atoms A ∈ ψ(Cr) and B ∈ ψ(C) such that A ∪B = V . We call B be

the father connector of C. Note that by the definition of Cr, |B| ≥ n/2.

Now, let C1, C2, . . . , Cl be the cut classes such that each Ci has an atom Ai ∈ ψ(Ci) such that

B ⊆ Ai (note that l ≥ 1 because Cr satisfies this). Since by Lemma 2.6.3 Ai, Aj does not cross

perhaps after renaming we have

B ⊆ A1 ⊆ A2 ⊆ . . . ⊆ Al = A. (6.3.1)

First, assume B = A1. If C is non-proper (and so C1 is proper) we let C1 be the father of C. Otherwise

we throw out C1 in the above chain and rename Ci to Ci−1. Now, assume B 6= A1. If A1 6= A2 we

let C1 be the father of C, otherwise by part (iv) of Lemma 2.6.3 exactly one of C1, C2 is non-proper.

We let the non-proper one be the father of C. This completes the definition of Γ. See Figure 6.3.3

for an example of Γ.

We say an atom A of a non-trivial cut class C is a connector if there is a non-trivial cut class

C′ that is a child or the father of C such that for B ∈ ψ(C′), A ∪ B = V , and it is non-connector

otherwise. For example, the father-connector is a connector atom. As another example all of the

atoms A1, . . . , Al in the chain described in (6.3.1) are connectors. Observe that any connector of C
coincides with at least one connector of a child or the father of C in a vertex of the tree hierarchy. So

the number of connectors of any cut class C is at most the sum of the in-degree and the out-degree

of C in Γ.

The non-connector atoms play an important role in the proof.

Fact 6.3.5. For any non-connector atom A of a non-trivial cut class C, all of the edges of E(A) are

trivial.

Proof. Let e = {u, v} ∈ E(A), and suppose there is a cut class C′ that contains e, i.e., u, v belong to

distinct atoms of B,B′ ∈ ψ(C′). By Lemma 2.6.3 there is an atom A∗ ∈ ψ(C) and B∗ ∈ ψ(C′) such

that A∗ ∪ B∗ = V . Since B 6= B′, one of B,B′, say B, is different from B∗. So, by Lemma 2.6.3

B ⊆ A∗. Therefore, since B ∩ A ⊃ {u} 6= ∅, A ∩ A∗ 6= ∅, and we get A = A∗. But by the

construction of Γ, this implies that C is a grand father of C′ in Γ, and A is a connector of C which

is a contradiction.

Using above fact we can define an assignment of trivial and inside edges. We say a trivial edge

edge e is assigned to a cut class C if C has a non-connector atom A that contains the endpoints of

e. Also, any inside edge of C is assigned to this cut class.
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a1b1
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a2b2 ∞∞∞

a3 b3
∞ ∞ ∞

a4 b4∞ ∞ ∞
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Figure 6.3.4: A random spanning tree distribution with a thread edge that is not good.

Definition 6.3.6 (Thread Edge). A thread is an induced directed path of cyclic cut classes in Γ.

The length of a thread is the number of its vertices. Let P be a thread that is a directed path from a

cut class C to C′, and let A be the father connector of C, and A′ be the father connector of C′. We

say an edge e = {u, v} is a thread edge of P if u, v /∈ A but u, v ∈ A′.

Note that by above definition a trivial edge or an inside edge can be a thread edge as well.

Our goal is to show that every thread edge is good. But it turns out that in some special cases

a thread edge is not even with high probability.

Example 6.3.7. Consider the graph in Figure 6.3.4 and let µ be the λ-random spanning tree dis-

tribution corresponding to the λ values shown next to each edge. It turns out that the edge {u, a3} is

highly negatively correlated with {b3, b4}, i.e., with high probability exactly one of them is in T ∼ µ.

Similarly, {v, a1} is highly negatively correlated with {b1, b2} and {u, v} is highly negatively correlated

with {a2, a4}. Let A be the set of blue vertices. It follows that

E [|T ∩ δ(A− {v})|] ≈ 2

E [|T ∩ δ(A)|] ≈ 2

E [|T ∩ δ(A ∪ {u})|] ≈ 2.

If F is the collection of cuts δ(A − {v}), δ(A), δ(A ∪ {u}), then Γ is a thread of length three and

{u, v} is a thread edge. But it turns out that the probability of E({u, v}) is very close to zero.

We note that the marginal vector of this graph does not correspond to a feasible solution of Held-

Karp relaxation. Nonetheless the symmetry of red and blue vertices make it impossible to prove

{u, v} is good. In Lemma 6.5.4 we show that under some technical assumptions thread edges of an

“unbalanced” thread are good.

We call a thread unbalanced with parameter ε ≥ 0 if the father-connector atoms of all of its cut

classes contain at least n( 1
2 +ε) vertices. For η, ε > 0 we use Uε to denote the set of unbalanced threads

of 1 + η near minimum with parameter ε. In the next proposition we show that any unbalanced

thread has a constant fraction of good edges.



www.manaraa.com

CHAPTER 6. SYMMETRIC TSP 131

Proposition 6.3.8. For any ε < 1/100 and η < ε/100 any thread P ∈ Uε(η) of length at least 10

has good thread edges of fraction at least ε/4 that are even with probability at least ε2/33000.

The above proposition is proved in Section 6.5.

In the last part of the proof we show that if the sum of the fraction of good trivial or inside

edges is small, then Γ contains many disjoint long unbalanced threads, so G has large fraction of

good edges.

Proof of Theorem 6.2.2. Note that by definition τ is chosen such that the cyclic cut classes are

the same as small cut classes. We fix ε later but throughout the proof we assume |Large(τ)| ≤ n.

Recall that ESmall is set of edges that not contained in any of the large cut classes. Let ET ⊆ ESmall

be the set of the trivial edges and E∗T ⊆ ET be the set of trivial good edges.

We prove the theorem in several steps. In the first step we lower bound x(ET − E∗T ).

Claim 6.3.9. If τ > 10000, then x(ET − E∗T ) ≤ 2n/τ + 2x(ESmall)/2.49.

Proof. Let ẼT := ET −E∗T . By Proposition 6.3.2 for any e ∈ ẼT , |xe−1/2| ≤ 1/1000. Furthermore,

no two edges in ẼT are adjacent. Now, let F be the set of edges adjacent to edges of ẼT that are

contained in at least one large cut class,

F := {{u, v} ∈ E − ESmall : ∃w ∈ V, {u,w} ∈ ẼT }.

It follows that

x(F ) ≥ (3− 1/500)|ẼT | − 2(x(ESmall)− x(ẼT )). (6.3.2)

where we used the fact that each edge in ESmall − ẼT is adjacent to at most two edges of ẼT .

Suppose there are l large cut classes. By Corollary 2.6.4 there is a set S ⊆ Large(τ) of pairwise

disjoint atoms such that |S| ≥ |Large(τ)| − 2l. Let

S∗ := {A ∈ Large(τ) : ∃{u, v} ∈ ẼT , |{u, v} ∩A| ≥ 1}.

Since ẼT ⊆ ET is a set of trivial edges, for any edge e ∈ ẼT any atom of Large(τ) contains either

both endpoints of e or none of them. So, the endpoints of any edge e ∈ ẼT is contained in at most

one atom of S. Therefore,

|S∗| ≤ |Large(τ)− S|+ |ẼT | ≤ 2l + |ẼT | ≤ 2n/τ + |ẼT |. (6.3.3)
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where the last inequality follows by Corollary 2.6.12. By Corollary 3.2.19,

x(F ) ≤
∑
A∈S∗

x(δ(A)) =
∑

A∈Large(τ)

x(δ(A))−
∑

A∈Large(τ)−S∗
x(δ(A))

≤ 2(1 + 3η)|Large(τ)| − 2(Large(τ)− |S∗|)

≤ 6η(1 + 2/τ)n+ 4n/τ + 2|ẼT |

where last inequality uses the fact that |Large(τ)| ≤ n(1 + 2/τ) and (6.3.3). Putting the above

equation and (6.3.2) together finishes the proof.

2.49x(ẼT ) ≤ 2x(ESmall) + 4.1 · n/τ.

where we used τ > 10000.

Let EN = ESmall − ET and let E∗I ⊂ ESN be the set of inside edges of small cut classes (recall

that any inside edge is good by Proposition 6.3.4). Next, we show that if x(E∗T ∪ E∗I ) is small then

Γ has many long disjoint unbalanced threads.

Claim 6.3.10. If τ ≥ max{10000, 200/x(EN )} x(E∗I )+x(E∗T ) ≤ x(EN )/500, then Γ has x(EN )/260

disjoint threads of length 10 with parameter x(EN )/(520n).

Proof. First, we lower bound the number of vertices of Γ. Let C1, . . . , Cs be the set of small non-

trivial cut classes. For each 1 ≤ i ≤ s, let di be the sum of in-degree and out-degree of Ci in Γ, and

let yi be the sum of the fraction of good edges in ESI or EST assigned to Ci. By Lemma 6.4.4,

x(E∗I ) + x(E∗T ) ≥
s∑
i=1

yi ≥
s∑
i=1

0.9

⌈
|ψ(Ci)| − 2di

2

⌉
≥ 0.45

s∑
i=1

|ψ(Ci)| − 0.9

s∑
i=1

di

≥ 0.44x(EN )− 0.9

s∑
i=1

di,

where in the last inequality we used Corollary 3.2.3 and τ > 10000, that is

x(EN ) ≤
s∑
i=1

x(E(G(ψ(Ci)))) ≤
s∑
i=1

|ψ(Ci)|(1 + η|ψ(Ci)|) ≤
s∑
i=1

|ψ(Ci)|(1 + 1/(20τ)).

Therefore,
∑s
i=1 di ≥ 0.48x(EN ). So, Γ contains at least 0.24x(EN ) edges, and at least this many

nodes. In other words, we have at least 0.24x(EN ) cut classes.

Let k be the number of leaves of Γ. By Corollary 6.4.5, any small cut class which is a leaf is

assigned good edges of fraction at least 0.9. Since we have at most n/τ large cut classes,

k ≤ (x(E∗I ) + x(E∗T ))/0.9 + n/τ ≤ x(EN )(1/400 + 1/200) ≤ x(EN )/130.
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Let Γ′ be the tree obtained by contracting each small cut class of degree 2 in Γ except the root.

Since Γ has k leaves, Γ′ has at most 2k vertices. Since each edge of Γ′ is corresponding to a thread

in Γ and Γ contains at least 30k vertices, Γ must have at least k disjoint threads of length 10.

So, we just need to show many of these threads are unbalanced. It follows from Lemma 2.6.14

that at least k/2 − O(1) of these threads are unbalanced with parameter (k/4 − O(1))/n. This

completes the proof of Claim 6.3.10.

Let ε = 1200/τ , ε1 = ε/108. ρ = ε2/1012. If x(E∗T ) + x(E∗I ) ≥ ε1n then we are done by

Proposition 6.3.2 Proposition 6.3.4.

So, we assume that is not the case. By Lemma 3.2.21 if |Large(τ)| ≤ (1− ε)n, then

x(ESmall) ≥ (ε− 3η)n.

By Claim 6.3.9

x(EN ) = x(ESmall)− x(ET −E∗T )− x(E∗T )− x(E∗I ) ≥ x(ESmall)(1− 2/2.49)− ε1n− 2n/τ ≥ 0.19εn.

where we used 1/τ < ε/1200. Now, by Claim 6.3.10, Γ has εn/1400 disjoint threads of length 10

with parameter ε/2800. By Proposition 6.3.8 each of these threads has ε/12000 good edges that are

even with probability ε2/1012. Letting E∗ be the set of trivial good edges, inside good edges and

good thread edges. By the above argument

x(E∗) ≥ εn

1400
· ε

12000
≥ ε1n.

6.4 Inside Good Edges

In this subsection we prove Proposition 6.3.4. We recommend the readers to see Section 3.2 for

properties of cyclic cut classes.

In Section 3.3 we showed that, except certain special cases, subsets of vertices of size 1 or 2

look like a Hamiltonian path with a constant probability. In this section we want to prove a locally

Hamiltonian property for cyclic cut classes. In Example 3.3.1 we observed that even an edge that

is contained only in two near minimum cuts is not necessarily good. But, in this section we are

looking at inside edges that may be contained in Ω(
√
τ) near minimum cuts, and it seems it should

be significantly harder to prove an inside edge is good. But as we will show the structure of near

minimum cuts and the cyclic cut classes help us to prove the claim.

For a cut class C, recall that G(ψ(C)) is the graph obtained by contracting the atoms of the cut

class C (see Figure 3.2.6 for an example). We prove our claim by showing that T ∼ µ is a Hamiltonian
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cycle in G(ψ(C)) with constant probability. This can be considered as a locally Hamiltonian property

for cyclic cut classes. Note that if T is a Hamiltonian cycle in G(ψ(C)), it does not mean that T

has a cycle in G. This is because T does not necessarily include a spanning tree in the induced

subgraphs G[A] for A ∈ ψ(C). For a spanning tree T and cut class C we use HC(T ) to denote T is a

Hamiltonian cycle in G(ψ(C)).
Before getting into the details of the argument we prove a simple averaging argument that shows

for any set U ⊂ V , if (U,U) is a near minimum cut, and |U | ≤ (1− ε)n for a constant ε, then there

is a constant probability that T ∼ µ is a spanning tree in G[U ] (see Corollary 6.4.2).

Lemma 6.4.1. For any set S ⊆ E,

P [|T ∩ S| = rank(S)] ≥ 1 + z(S)− rank(S).

Proof. Let p := P [|T ∩ S| = rank(S)] Since for any spanning tree T , |T ∩ S| ≤ rank(S),

z(S) = E [|T ∩ S|] ≤ p · rank(S) + (1− p) · (rank(S)− 1)

= rank(S) + p− 1.

Note that in the above equation we specifically used the fact that µ preserves the marginal probability

in z and not x, this is because we are summing up Θ(n) fraction of edges of G. Therefore p ≥
1 + z(S)− rank(S).

Suppose U ⊂ V such that |U | ≤ o(n) and (U,U) is a near minimum cut of G. The next corollary

shows that with high probability T ∼ µ is a spanning tree inside U . Even if |U | ' n/2, this

probability is still roughly 1/2 when η is small enough.

Corollary 6.4.2. If (U,U) is a (1 + η) near minimum cut with respect to x, and |U |/n + η < 1,

then

P [|T ∩ E(U)| = |U | − 1] ≥ 1− |U |
n
− η

Proof. Since the fractional degree of each vertex with respect to x is 2, and x(δ(U)) ≤ 2 + 2η, we

have

x(E(U)) ≥ 1

2
(2|U | − 2− 2η) = |U | − 1− η.

So,

z(E(U)) ≥ (1− 1/n)(|U | − 1− η) ≥ |U | − |U |
n
− 1− η.

The conclusion follows from Lemma 6.4.1, by letting S := E(U), and noting that rank(S) ≤ |U | −
1.

Now, we are ready to prove the main result of the section. We show that with constant probability,

all the near minimum cuts of any cyclic cut class are even.
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Lemma 6.4.3. Let C be a non-trivial cut class of (1 + η) near minimum cuts of G that is not the

root of Γ. If 20|ψ(C)|2 ≤ 1/η, then, with probability at least 1/2000, T is a Hamiltonian cycle in

G(ψ(C)), i.e.,

P [HC(T )] ≥ 1/2000.

So, with a constant probability all of the near minimum cuts in C have exactly two edges in a tree T .

Proof. Since 2|ψ(C)|η ≤ 1, by Corollary 3.2.3, C does not have any inside atoms. Let ψ(C) =

{A1, A2, . . . , Ak} and assume that they are placed around the polygon in the order of their labels.

So HC(T ) is the event that |T ∩ E(Ai, Ai+1)| = 1 for all consecutive pair of atoms.

Since all cuts of C the representing diagonals of the polygon, if HC(T ) occurs, then T contains

exactly two edges in each of the cuts in C. Let A1 be the father-connector of C. Since C is not the

root of Γ, |A1| >= n
2 vertices. Let

F :=

k⋃
i=2

E(Ai),

I :=
⋃

1≤i,j≤k

E(Ai, Aj)−
⋃

1≤i≤k

E(Ai, Ai+1)

We compute the probability of HC(T ) in the following steps: first we condition on |T ∩ I| = 0.

Then we condition on |T ∩ E(A1)| = |A1| − 1. Let µ′′ be the resulting distribution. Observe that

µ′′ is no longer a random spanning tree distribution, it is a product of two random spanning tree

distribution, one in the induced subgraph G[A1] and the other in G/A1. So, any random variable

that is a function of edges in E(A1) is independent of functions of edges in E − E(A1). So, we

show that under µ′′, with a constant probability |T ∩F | = rank(F ) and with a constant probability

|T ∩E(A1, A2)| = 1, |T ∩E(Ak, A1)| = 1. Since any tree T ∼ µ′′ has no edges in I, these two imply

that HC(T ) occurs.

First by Corollary 3.2.3 (3), we have

k∑
i=1

x(E(Ai, Ai+1)) ≥ k(1− kη) ≥ k − 1

20
,

where we the fact that G is fractionally 2-connected and the lemma’s assumption k2η ≤ 1/20. Since

by Proposition 3.2.1, x(E(G(ψ(C)))) ≤ k(1 + η), we have

z(I) ≤ x(I) ≤ k(1 + η)−
k∑
i=1

x(E(Ai, Ai+1)) ≤ kη +
1

20
≤ 1

10
.

By Markov inequality,

P [|T ∩ I| = 0] ≥ 9/10. (6.4.1)
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Let µ′ := {µ | |T ∩ I| = 0}. By Corollary 2.9.9 and Corollary 6.4.2

Eµ′
[
|T ∩ E(A1)|

]
≥ z(E(A1)) ≥ 1− |A1|/n− kη ≥ 9/20

where we used |A1| = n− |A1| ≤ n/2, Let µ′′ = {µ′ | |T ∩ E(A1)| = |A1| − 1}. Then,

Pµ [HC(T )] = Pµ [HC(T ) | |T ∩ I| = 0]Pµ [|T ∩ I| = 0]

≥ 9

10
Pµ′

[
HC(T ) | |T ∩A1| = |A1| − 1

]
Pµ′

[
|T ∩A1| = |A1| − 1

]
≥ 9

10
· 9

20
Pµ′′ [|T ∩ F | = rank(F )] · Pµ′′ [|T ∩ E(A1, A2)| = 1, |T ∩ E(Ak, A1)| = 1] .

So, it remains to lower bound the two terms in the right hand side. First, we compute Pµ′′ [|T ∩ F | = rank(F )].

By Theorem 2.9.11 and Corollary 2.9.9,

Eµ′′ [|T ∩ F |] ≥ Eµ′ [|T ∩ F |] ≥ z(F ) = (1− 1/n)x(F )

≥ (1− 1/n)

k∑
i=2

(|Ai| − 1− kη)

≥
k∑
i=2

|Ai| −
∑k
i=2 |Ai|
n

− (k − 1)(1 + kη)

≥
k∑
i=2

(|Ai| − 1)− 1

2
− 1

20
,

where the third inequality follows from Proposition 3.2.1, and the last inequality follows from the

fact that |A1| ≥ n/2. So Pµ′′ [|T ∩ F | = rank(F )] ≥ 9/20. It remains to lower bound the probability

of the event |T ∩E(Ak, A1)| = 1 and |T ∩E(A1, A2)| = 1. We use Lemma 3.3.3 to finish the proof.

By Corollary 2.9.9

9/20 ≤ 1− kη − 1/2 ≤ Eµ′′ [|T ∩ E(A1, Ak)|] ,Eµ′′ [|T ∩ E(A1, A2)|] ≤ 1 +
1

10

29/20 ≤ 2− kη − 1/2 ≤ Eµ′′ [|T ∩ E(A1, Ak|+ |T ∩ E(A1, A2)|] ≤ 2 +
1

10
.

By Proposition 2.9.16,

Pµ′′ [|T ∩ E(A1, A2)|+ |T ∩ E(Ak, A1)| = 2] ≥ min{Ber(29/20, 2),Ber(2.1, 2)} ≥ 1

20
.

Let A = E(A1, A2) and B = E(A1, Ak), α = 9/20, β = 9/20, ε = 1/20, we obtain in Lemma 3.3.3

we obtain

Pµ′′ [|T ∩ E(A1, A2)| = 1, |T ∩ E(A1, Ak)| = 1] ≥ 1/500.

This completes the proof of Lemma 6.4.3.
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Now, we are ready to prove Proposition 6.3.4.

Proof of Proposition 6.3.4. Since e is an inside edge of C, u and v are singleton atoms of C and the

only near minimum cuts containing e are the representing diagonals of the polygon representation of

C and the trivial cuts ({u}, {u}) and ({v}, {v}). By the above lemma with probability 1/4000, T is

a Hamiltonian cycle in G(ψ(C)). But since u and v are singleton atoms of C, they are not contracted

in G(ψ(C)), and |T ∩ δ(u)| = |T ∩ δ(v)| = 2.

Since each cut class has a large fraction of inside or trivial edges if its degree in Γ is small, we

get the following bound on the good edges assigned to the cut class.

Lemma 6.4.4. Let C be a non-trivial cyclic cut class such that C 6= Cr and let d be the sum of

in-degree and out-degree of C in Γ. Then the sum of the fraction of good edges assigned to C is at

least 0.9
⌈
|ψ(C)|−2d

2

⌉
.

Proof. Since C has degree d, it at most d connectors. Therefore, by Proposition 3.2.1 there are

k ≥ |ψ(C)| − 2d pairs of atoms of C,

{{A1, B1}, {A2, B2}, . . . , {Ak, Bk}},

such that for all 1 ≤ i ≤ k, E(Ai, Bi) ≥ 1 − η|ψ(C)|, each atom is in at most two pairs and all of

A1, . . . , Ak, B1, . . . , Bk are non-connectors. We show that C is assigned a fraction 0.9dk/2e of good

edges.

Consider a pair {Ai, Bi}, if they both are singletons, say Ai = {u} and Bi = {v}, then by

Proposition 3.2.1 the inside edge {u, v} has fraction at least 1− η|ψ(C)| ≥ 0.9. Since C is cyclic, by

Proposition 6.3.4 {u, v} is a good edge and it is assigned to C.
Otherwise, without loss of generality, suppose Ai is a non-singleton. Since Ai is non-connector by

Fact 6.3.5 all of the edges of E(Ai) are trivial edges and since Ai is non-connector they are assigned

to C. By Proposition 3.2.1, x(δ(Ai)) ≤ 2(1 + η|ψ(C)|). If Ai = {u, v} we have

x{u,v} ≥ 1− η|ψ(C)| ≥ 0.9,

and by Proposition 6.3.2 it is a good edge. Otherwise, |Ai| ≥ 3, so

x(E(Ai)) ≥ 3− (1 + η|ψ(C)|) ≥ 1.9

and by Proposition 6.3.2 at least a fraction (1/2 − 1/1000)x(E(A)) of them are good. The lemma

follows from the fact that each atom Ai is in at most two pairs.

Corollary 6.4.5. Let C be a non-trivial cyclic cut class that is a leaf of Γ, i.e., it has out-degree 0.

Then C is assigned good edges of fraction at least 0.9.
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Proof. If |ψ(C)| ≥ 4, then we are done by Lemma 6.4.4. Otherwise, C must have two atoms, say

ψ(C) = {A1, A2}, and suppose A1 is the father-connector of C. Since C is a non-trivial cut class, A2

is not a singleton. Also since C has out-degree 0, A2 is non-connector. Therefore, by Fact 6.3.5 the

edges between the vertices of A2 are trivial and similar to the proof of Lemma 6.4.4 at least 0.9 of

them are good and assigned to C.

6.5 Thread Good Edges

In this section we prove Proposition 6.3.8. This is the most unclean part of the proof, we recommend

the readers to fully understand the proofs in Sections 3.3 and 6.4 before reading this section.

Let P ∈ Uε(η). We show that P is assigned thread edges of fraction at least ε/4. Recall that

these thread edges can be inside edges or trivial edges assigned to one of the cut classes of P . If P

has trivial or inside thread edges of total fraction at least ε/4 we are done. Therefore, in the proof

we assume P has less then ε/4 trivial or inside good thread edges (it can be even zero). It turns out

that this will eliminate many possible cases. First, we show that if P contains a cut class Ci where

|ψ(Ci)| 6= 2, 4, then it will be assigned trivial or inside good edges of fraction at least 3/4.

By Lemma 6.4.4, any cut class with |ψ(Ci)| > 4 of out-degree 1 is assigned good edges of fraction

at least 0.9. But by definition any cut class of P is cyclic and have out-degree 1 in Γ. So, in the rest

of this section we assume all of the cut classes of P have either 2 or 4 atoms. We consider two cases:

(i) all cut classes of P are non-proper. In Lemma 6.5.5 we show that if P contains 6 consecutive

non-proper cut classes then it is assigned good edges of fraction ε
4 . (ii) P contains at least one cut

class with 4 atoms. In Lemma 6.5.7 we show that if P contains 3 consecutive cut classes such that

the third one has 4 atoms then it is assigned good edges of fraction ε
4 . Putting them together it is

straightforward that if P has at least 8 cut classes, then at least one of the two cases occurs.

Let us define some notations first: Let C1, C1 be two consecutive cut classes in P . We use the

notation C1 → C2 to show Ci+1 is the unique child of Ci. Furthermore, say B is the father connector

of C2, by Lemma 2.6.3 C1 has a unique atom A such that A∪B = V . We call A the child-connector

of C1.

Before getting into the proof let us describe another classes of thread edges of P that are trivial.

This special case would make the proofs of the two lemmas much simpler.

Lemma 6.5.1. Let P ∈ U0(η), and C1 → C2 ∈ P be cut classes with at most 4 atoms. Let

A ∈ ψ(C1) be the child connector of C1, and B ∈ ψ(C2) be the father-connector of C2. If |A−B| > 2

and η < 1/20, then P has good thread edges of fraction 3
8 . Otherwise, if |A − B| = 2 and the two

vertices are connected by an edge of fraction at least ε, then P has good edges of fraction at least ε.

Proof. Let D := A− B. By the definition of A,B, A ∪ B = V (G), so B ∪D = A. By definition of

P the edges of E(D) are trivial thread edges assigned to P . So, we need to show a large fraction of
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edges of E(D) is good. Since C1, C2 have at most 4 atoms, by Proposition 3.2.1,

x(δ(A)),x(δ(B)) ≤ 2(1 + 2η). (6.5.1)

Since for each v ∈ D, x(δ(v)) = 2,

x(E(D)) ≥ 2|D| − x(δ(A))− x(δ(B))

2
≥ 2|D| − 4(1 + 2η)

2
= |D| − 2− 4η.

If |D| ≥ 3, x(E(D)) ≥ 1 − 4η and by Proposition 6.3.2 at least half of these trivial edges are

good. Therefore P has good thread edges of fraction at least 3/8, and we are done. Otherwise,

suppose D = {u, v}, and x{u,v} > 0. If x{u,v} is bounded away from 1/2, then by Proposition 6.3.2

it is a good edge. Otherwise x{u,v} is very close to 1/2. In the following claim we use the fact that

x(δ(A)),x(δ(B)) ≈ 2 to show that such an edge is always good.

Claim 6.5.2. If D = {u, v} and the edge e = {u, v} satisfies |xe − 1/2| < 1/200 then P [E(e)] ≥
1/40000.

Proof. Let SA := E({u, v}, A), SB := E({u, v}, B) and S := SA ∪ SB be the set of edges separating

u and v from the rest of the graph. Recall that by Corollary 3.3.4, P [E(e)] is a constant, unless

|T ∩S| = 3 with a high probability. So, essentially we need to show that with a constant probability

|T ∩ S| = 2.

By (6.5.1) and the claim’s assumption,

2 ≤ x(δ(A)) = x(SA) + x(E(A,B)) ≤ 2(1 + 2η)

2 ≤ x(δ(B)) = x(SB) + x(E(A,B)) ≤ 2(1 + 2η)

3− 1/100 ≤ x(SA) + x(SB) ≤ 3 + 1/100.

.Therefore,

1.49 ≤ 1.5− 1/200− 2η ≤ x(SA),x(SB) ≤ 1.5 + 1/200 + 2η ≤ 1.51,

where we used the assumption that η < 1/400.

Let µ′ = {µ | Ie = 1}. By Fact 2.9.8,

Eµ′
[
|T ∩ (E(A) ∪ E(B))|

]
≥ z(E(A)) + z(E(B))− 0.5− 1

200

≥ (1− 1

n
)(|B ∪A| − 2− 4η)− 0.5− 1

200

≥ |B|+ |A| − 3.5− 4η − 1

200
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where in the second inequality we used (6.5.1). So, we either have Eµ′
[
|T ∩ E(A)|

]
≥ |A| − 1.74 or

Eµ′
[
|T ∩ E(B)|

]
≥ |B| − 1.74. Wlog suppose the former is the case. By Lemma 6.4.1 we have

Pµ′
[
|T ∩ E(A)| = |A| − 1

]
≥ 0.24.

Let µ′′ = {µ′ | |T ∩ A| = |A| − 1}. Since T ∼ µ′′ is connected in the induced subgraphs G[A]

and G[{u, v}] it must have at most one edge in SA. So,

Eµ′′ [|T ∩ SA|] ≤ 1.

Therefore, by Corollary 2.9.9

1.72 ≤ Eµ′′ [|T ∩ SA|] + Eµ′′ [|T ∩ SB |] ≤ x(SB) ≤ 2.51,

Therefore, by Proposition 2.9.16,

ε ≥ min{Ber(1.72, 2),Ber(2.51, 2)} ≥ 1/52.

This shows that there are exactly two edges in the cut {u, v}, {u, v} with a constant probability.

Now, we are ready to prove the claim using Lemma 3.3.3. Let X = |T ∩ δ(u)|, Y = |T ∩ δ(v)|.
Then, by the above equation and Corollary 2.9.9,

0.23 ≤ Eµ′′ [X] ,Eµ′′ [Y ] ≤ 1.51

1.72 ≤ Eµ′′ [X + Y ] ≤ 2.51.

So, we can let α = 0.24, β = 0.23 and ε = 1/52 we get

Pµ′′ [X = 1, Y = 1] ≥ 1/4000.

Therefore,

P [E(e)] = P [E(e)|Ie = 1]P [ie = 1]

≥ 0.49Pµ′
[
E(e) | |T ∩ E(A)| = |A| − 1

]
Pµ′

[
|T ∩ E(A)| = |A| − 1

]
≥ 0.1Pµ′′ [X = 1, Y = 1] ≥ 1/40000.

This completes the proof of Claim 6.5.2.

This completes the proof of Lemma 6.5.1.

It follows from the above lemma that if a thread P ∈ Uε(η) has less than ε/4 good thread edges,
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then, for any two cut classes C1 → C2 ∈ P where A is the child connector of C1 and B is the father

connector of C2, either |A−B| = 1, or |A−B = 2|, but x(E(A−B)) < ε/4. This property simplifies

many of the cases that we consider in the rest of this section.

In the rest of this section, for a vertex u ∈ V , and A ⊆ V we use

x(u,A) :=
∑

{u,v}∈E:v∈A

x{u,v}.

Note that u may be a vertex of A.

Corollary 6.5.3. Let P ∈ U0(η) for some ε ≥ 0, C1 → C2 ∈ P be cut classes with at most 4 atoms,

A be the child-connector of C1, B be the father connector of C2, and D = A− B. If D = {u}, then

1− 4η ≤ x(u,A),x(u,B) ≤ 1 + 4η, and if D = {u, v}, then

1− 4η − x{u,v} ≤ x(u,A),x(u,B),x(v,B),x(v,B) ≤ 1 + 4η

Proof. We start by proving the case that |D| = 1. Let D = {u}. By Proposition 3.2.1

2 ≤ x(δ(A)) = x(u,A) + x(E(A,B)) ≤ 2(1 + 2η)

2 ≤ x(δ(B)) = x(u,B) + x(E(A,B)) ≤ 2(1 + 2η)

Adding up the above inequality and using x(δ(u)) = 2 we get

4 ≤ x(δ(u)) + 2x(E(A,B)) = 2 + 2x(E(A,B)) ≤ 4(1 + 2η).

Therefore, 1 ≤ x(E(A,B)) ≤ 1 + 4η. So,

x(u,A),x(u,B) ≥ 1− 4η.

Now, suppose D = {u, v}. Since x(δ({u, v})) = 4− 2x{u,v}, similar to above we get

x{u,v} ≤ x(E(A,B)) ≤ 4η + x{u,v},

2− 4η − x{u,v} ≤ x(E(D,A)),x(E(D,B)) ≤ 2 + 4η − x{u,v}.

For the sake of contradiction, assume x(u,A) < 1− 4η − x{u,v} (the other cases are similar). Then,

by the above equation x(v,A) > 1. Therefore,

2 ≤ x(δ({v} ∪A)) = x(u,A) + x(v, {u} ∪B) + x(E(A,B)) < 1− 4η − x{u,v} + 1 + 4η + x{u,v} = 2,

which is a contradiction.
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The following technical lemma is the key lemma of this section.

Lemma 6.5.4. Let A ⊆ V and v ∈ A, let µ be any λ-random spanning tree distribution, δ(A) =

SX ∪ SY , and µ′ = {µ | |T ∩ E(A)| = |A| − 1}. For T ∼ µ let

X := |T ∩ SX |, Y := |T ∩ SY |, I := |T ∩ E({v}, A)|, Z := |T ∩ E({v}, A)|.

If for 0 < ε < 1/50, E [|T ∩ E(A)] ≥ |A| − 1− (1/2− ε) and

1− ε/2 ≤ E [X] ,E [Y ] ,E [I] ,E [Z] ≤ 1 + ε

Then,

Pµ′ [X = Y = Z = I = 1] ≥ ε2/2000.

Proof. Let

IX := |T ∩ E({v}, A) ∩ SX |, IY := |T ∩ E({v}, A) ∩ SY |.

Note that IX + IY = I. First, observe that Pµ′ [I ≤ 1] = 1, this is because any tree T ∼ µ′ with

|T ∩ E({v}, A)| = 1 has a cycle. We consider two cases.

Case 1: Eµ′ [IX ] ,Eµ′ [IY ] ≥ ε/4. Let µ′′ = {µ′ | I = 1}. The important observation is that, for

T ∼ µ′′, any function of edges of E({v}, A) is independent of any function of the rest of the

edges of G. Therefore,

Pµ′ [X = Y = Z = I = 1] = min{Pµ′′ [IX = 1] ,Pµ′′ [IY = 1]} · Pµ′′ [X + Y − I = 1, Z = 1] .

(6.5.2)

We lower bound both of the terms in the right hand side. First, observe that

Pµ′′ [IX = 1] = 1− Pµ′′ [IY = 1] =
Eµ′ [IX ]

Eµ′ [I]
.

So, Pµ′′ [IX ] ,Pµ′′ [IY ] ≥ ε/2, and the first term of the RHS of (6.5.2) is at least ε/4.

It remains to lower bound the second term. We will use Lemma 3.3.3. By Corollary 2.9.9

Eµ′′ [Z] ≥ Eµ [Z]− (|A| − Eµ [I + |T ∩ E(A)|]) ≥ Eµ [Z]− 1/2 + ε/2 ≥ 1/2.

Similarly,

Eµ′′ [X + Y − I] = Eµ′′ [X + Y ]− 1 ≥ Eµ′ [X + Y ]− 1 ≥ Eµ [X + Y ]− 1− (1/2− ε) ≥ 1/2,
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and Eµ′′ [X + Y + Z − I] ≥ 1.5− ε/2. Putting together,

1/2 ≤ Eµ′′ [Z] ,Eµ′′ [X + Y − I] ≤ 1 + 2ε ≤ 1.1

1.5− ε/2 ≤ Eµ′′ [X + Y − I + Z] ≤ 2 + 3ε ≤ 2.1.

where we used the assumption that ε < 1/50. Therefore, by Proposition 2.9.16

Pµ′′ [X + Y + Z − I = 2] ≥ min{Ber(1.4, 2),Ber(2.1, 3)} ≥ 1/20.

Letting α = 0.45, β = 0.5 and using Lemma 3.3.3

Pµ′ [X = Y = Z = I = 1] ≥ ε

4
Pµ′′ [X + Y − I = Z = 1] ≥ ε

2000
.

Case 2: Eµ′ [|T ∩ IX |] < ε/4. First, observe that

Eµ′ [IY ] ≥ Eµ′ [I]− ε/4 ≥ Eµ [I]− (1/2− ε)− ε/4 = 1/2 + ε/4. (6.5.3)

where we used the lemma’s assumption that Eµ [I] ≥ 1− ε/2. So, Eµ′ [Y − IY ] ≤ 1/2 + ε. Let

µ′′ = {µ|IY = 1, Y − IY = 0}. Note that IX = 0 for any T ∼ µ′′. Therefore, it is sufficient to

lower bound Pµ′′ [X = 1, Z = 1]. We will use Lemma 3.3.3.

By Corollary 2.9.9, it follows that any of the random variables X,Z,X + Z is decreased no

more than 1− 5ε/4. For example,

Eµ′′ [X] ≥ Eµ′ [X]−(1−Eµ′ [IY ]) ≥ Eµ [X]−(1/2−ε)−(1/2−ε/4) ≥ Eµ [X]−(1−5ε/4) ≥ 3ε/4.

where we used (6.5.3), and the lemma’s assumption that E [X] ≥ 1− ε/2. Therefore,

ε/2 ≤ Eµ′′ [X] ,Eµ′′ [Z] ≤ 1 + ε+ 1.5 + 2ε ≤ 1.6

1 + ε/4 ≤ Eµ′′ [X + Z] ≤ 2.5 + 3ε ≤ 2.6

where we used ε < 1/50. Therefore, by Proposition 2.9.16,

Pµ′′ [X + Z = 2] ≥ min{Ber(1 + ε/4, 2),Ber(2.6, 2)} ≥ ε/4(1− ε/4).

where we used ε < 1/50. Letting α = 0.2, β = ε/2, by Lemma 3.3.3 we get

Pµ′′ [X = 1, Z = 1] ≥ ε2

130
.
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e

Figure 6.5.5: Setting in Lemma 6.5.6. Dashed edges represent deleted trivial cut classes. Connecting
atoms are represented in the same circle.

Therefore,

Pµ′ [X = Y = Z = I = 1] ≥ Pµ′ [IY = 1]·Pµ′ [Y − IY = 0 | IY = 1]·Pµ′′ [X = 1, Z = 1] ≥ ε2

1400
.

This completes the proof of Lemma 6.5.4.

6.5.1 Threads with non-proper Cut Classes

In the part we discuss threads where all of their cut classes are non-proper, i.e., have exactly 2

atoms. The following lemma is the main result of this subsection.

Lemma 6.5.5. Let P ∈ Uε(η) for ε < 1/100, η < ε/100, C1 → C2 → . . . → C6 ∈ P be non-proper

cut classes with child-connectors A1, . . . , A6 respectively. Then P had good thread edges of fraction

at least ε/4 that are even with probability at least ε2

33000 .

Before proving this lemma we show that if there is an edge e = {u, v} for v ∈ Ai − Ai+1, and

u ∈ Ai+1 −Ai+2, where 1 ≤ i ≤ 4, then e is a good.

Lemma 6.5.6. Let P ∈ Uε(η) for ε < 1/100 and η < ε/100, C1 → C2 → C3 ∈ P be non-proper

cut classes with child-connectors A1, A2, A3 respectively. For any u ∈ A2 − A3, v ∈ A1 − A2, If

e = {u, v} ∈ E and P has less than ε/4 good thread edges then

P [E(e)] =
ε2

33000
.

Proof. As shown in Figure 6.5.5 e is contained in 3 near minimum cuts: 2 trivial degree cuts, and

the near minimum cut defined by the cut class C2.

Our proof is simply an application of Lemma 6.5.4. Since (A2, A2) is a (1 + η) near minimum

cut,

Eµ [|T ∩ E(A2)|] = z(E(A2)) ≥ |A2| − 1− η − |A2|/n ≥ |A2| − 1− (1/2− ε)− η.

where in the last equation we used the assumption that P ∈ Uε(η), i.e., |B2| ≥ (1/2 + ε)n. Since P
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has less than ε/4 good thread edges, by Lemma 6.5.1 and Corollary 6.5.3,

1− ε/4− 4η ≤ x(v,A2),x(u,A2) ≤ 1 + 4η,

1− 4η ≤ x(v,A2) ≤ 1 + 4η + ε/4,

1− 4η ≤ x(A2 − {u}, A2) ≤ 1 + ε/4 + 6η.

Now, let µ′ = {µ | |T ∩E(A2)| = |A2|−1}. Also, let SX := E({u}, A2), SY := δ(A2)−SX , ε′ = ε−η.

Since η < ε/100, ε/4 + 4η < ε′/2. Therefore, for A = A2 and ε = ε′ Lemma 6.5.4 implies

Pµ′ [|SX ∩ T | = 1, |SY ∩ T | = 1, |δ(v) ∩ T | = 2] ≥ ε′
2

2000
.

Observe that for T ∼ µ′ random variables which are functions of edges inside A2 are independent

of functions of edges outside A2. Therefore,

Pµ [E(e)] ≥ 1

2
Pµ′ [E(e)] =

1

2
Pµ′ [|SX ∩ T | = |SY ∩ T | = 1, |δ(v) ∩ T | = 2] · Pµ′ [|T ∩ E(A2) ∩ δ(u)| = 1]

≥ ε′
2

4000
· Pµ′ [|T ∩ E(A2) ∩ δ(u)| = 1] .

where the first inequality follows by Corollary 6.4.2. But, by Corollary 6.5.3,

1− ε/4− 4η ≤ x(u,A2) ≤ 1 + 4η,

so 0.9 ≤ Eµ′ [|T ∩ E(A2) ∩ δ(u)|] ≤ 1.5. Therefore, the lemma follows by an application of Proposi-

tion 2.9.16,

Pµ′ [|T ∩ E(A2) ∩ δ(u)| = 1] ≥ min{Ber(0.9, 1),Ber(1.5, 1)} ≥ 1/8.

Now we are ready to prove Lemma 6.5.5:

Proof of Lemma 6.5.5. Let Di := Ai − Ai+1, for 1 ≤ i ≤ 5. By Lemma 6.5.1 if |Di| > 2 for some

1 ≤ i ≤ 5, then we are done, so assume |Di| ≤ 2 for all i ≤ 5. Also, if |Di| = 2, for some i, then

there is edge of fraction at least 1/3 between a pair of vertices in Di and Di+1; so by Lemma 6.5.6

P has good thread edges of fraction at least 1
3 ≥ ε/4 and we are done. So assume Di = {ui} for

1 ≤ i ≤ 5 (see Figure 6.5.6).

By Lemma 6.5.6 if two consecutive vertices are connected by an edge of fraction 1
100 ≥ ε/4, then

that edge is good and we are done. So, suppose ∀1 ≤ i ≤ 5 : x{ui,ui+1} ≤ 1
100 (note that this

can be even zero). We show that x{u2,u4} ≥ 19
20 , and it is even with a constant probability. Edge

(u2, u4) is included in 4 near minimum cuts: 2 degree cuts, and the cuts corresponding to the cut

classes C3 and C4 (i.e., (A3, A3) and (A4, A4)); so we need to show all these 4 cuts are even with
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Figure 6.5.6: Setting in Lemma 6.5.5.

a constant probability. We prove that the 3 edges {u1, u3}, {u2, u4}, {u3, u5} ∈ E and each have a

large fraction, then by union bound all of them will be sampled in spanning tree T ∼ µ, and thus

the 2 cuts (A3, A3) and (A4, A4) are even. Finally, we use Lemma 3.3.3 to show that the degree of

u2 and u4 is even with a constant probability.

By Corollary 6.5.3 we have

1− 4η − 2ε

4
≤ x(u3, A2),x(u2, A1),

1− 4η − ε

4
≤ x(u1, A2)

Thus,

x{u1,u3} ≥ x(u1, A2)− (x(δ(A2))− x(u2, A1)− x(u3, A2)) ≥ 1− 14η − 5ε/4 ≥ 19

20
.

Similarly, it can be shown that x{u3,u5}, x{u2,u4} ≥ 19
20 . Let e1 = {u1, u3}, e2 = {u2, u4}, e3 =

{u3, u5}. Define

X := |T ∩ {E(A3, A3) ∪ E(A4, A4)} − {e1, e2, e3}|,

and let I1, I2, I3 be the indicator random variables for the edges e1, e2, e3 respectively. Let µ′ := {µ |
X = 0}. Since

Eµ [X] ≤ 4(1 + η)− xe1 − 2xe2 − xe3 ≤
1

5
+ 4η,

by Corollary 2.9.9, this can only increase the probability of other edges by at most 1
5 + 4η. Now let

µ′′ = {µ′ | I1 = 1, I2 = 1, I3 = 1}. By Fact 2.9.8,

Eµ′ [I1 + I2 + I3] ≥ Eµ [I1 + I2 + I3] ≥ 3− 3

20
.

Therefore,

Pµ [E(e2)] = Pµ′ [E(e2)]Pµ [X = 0] ≥ (4/5− 4η)Pµ′′ [E(e2)]Pµ′ [I1 = 1, I2 = 1, I3 = 1] ≥ 0.7Pµ′′ [E(e2)]
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Thus it is sufficient to show Pµ′′ [E(e2)] is a constant. In any tree T ∼ µ′′, cuts (A3, A3) and (A4, A4)

are even. So, it is sufficient to show u2 and u4 have even degree. By Corollary 2.9.9,

4/5 ≤ Eµ′′ [|T ∩ δu2(u4)|] ,Eµ′′ [|T ∩ δu4
(u2)|] ≤ 7/5

9/5 ≤ Eµ′′ [|T ∩ δu4
(u2)|+ |T ∩ δu2

(u4)|] ≤ 12/5

Therefore, by Proposition 2.9.16,

Pµ′′ [|T ∩ δu4
(u2)|+ |T ∩ δu2

(u4) = 2] ≥ min{Ber(9/5, 2),Ber(12/5, 2)} ≥ 0.025.

Letting A := δu4
(u2), B := δu2

(u4), α = 3
10 , β := 4

5 , by Lemma 3.3.3,

Pµ′′ [E(e2)] ≥ 0.7 · Pµ′′ [|T ∩ δu4
(u2)| = 1, |T ∩ δu2

(u4)| = 1] ≥ 1/2000.

6.5.2 Threads with Proper Cut Classes

It remains to consider the cases where a thread P contains cut classes with 4 atoms. Let C ∈ P be a

cut class with 4 atoms. Similar to the proof of Lemma 6.4.4, observe that if Ci has a non-connector

non-singleton atom, or a consecutive pair of singletons, then P has good thread edges of fraction at

least 3/4. We say a cut class is an exceptional 4-cut class if it doesn’t have a non-connector non-

singleton atom or a consecutive pair of singletons (see Figure 6.5.7 for an example). It follows that

an exceptional 4-cut class C has a very simple structure: say ψ(C) = {A1, A2, A3, A4} in the order

that atoms are placed in the polygon representation and A1 is the father-connector, then A2 and A4

are (non-connecting) singletons and A3 is the unique child-connector. It follows from Corollary 3.2.3

that x(E(Ai, Ai+1)) ≥ 1− η for all 1 ≤ i ≤ 4.

The following is the main result of this subsection.

Lemma 6.5.7. Let P ∈ Uε(η) for ε < 1/100 and η < ε/100. Let C1 → C2 → C3 ∈ P be 3 cut classes

with child-connectors A1, A2, A3 and father-connectors B1, B2, B3 such that C3 has 4 atoms. If all

of classes with 4 atoms in P are exceptional 4-cut class, then P had good thread edges of fraction at

least ε/4, that are even with probability at least ε2

10000 .

Recall that for a cut class C, HC(T ) is the event that T is a Hamiltonian cycle in G(ψ(C)).

Lemma 6.5.8. Let P ∈ Uε(η) for ε > 1/100, and η < ε/100, C1 → C2 ∈ P , be 2 cut classes with

child connectors A1, A2, father connectors B1, B2 such that C2 is an exceptional 4-cut class and {u}
and {v} are the two singletons of C2. If P has less than ε/4 fraction of good thread edges, then for
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any w ∈ A1 −A2 − {u, v},

P [HC2(T ), |T ∩ δ(w)| = 2] ≥ ε2

10000
.

Proof. The proof is essentially an application of Lemma 6.5.4. Let Z := |T ∩ ({u, v} ∪ E(A2, B2))|.
By Corollary 3.2.3,

Eµ [X] = x(E(A2, B2)) + x{u,v} ≤ 4(1 + 2η)− 4(1− η) = 12η.

Let µ′ = {µ | Z = 0}. Let A := A2 ∪ {u, v} = B. Since x(A,A) ≤ 2 + 4η,

Eµ′ [|T ∩ E(A)|] ≥ z(E(A)) ≥ |A| − 4η − |A|/n ≥ |A| − 1− (1/2− ε)− 4η.

where we used the assumption that P ∈ Uε(η), i.e., |B2| ≥ (1/2 + ε)n. Since P has less than ε/4

good thread edges, by Lemma 6.5.1 and Corollary 6.5.3

1− ε/4− 4η ≤ x(w,A) ≤ 1 + 16η,

1− η ≤ x(u,A),x(v,A) ≤ 1 + 11η.

1− 4η ≤ x(w,A) ≤ 1 + ε/4 + 16η

Now, let µ′′ = {µ | |T ∩E(A)| = |A|−1}. Also, let SX := δ(u)∩δ(A), SY := δ(A)∩δ(v) = δ(A)−SX ,

ε′ = ε − 4η. Since η < ε/100 and ε/4 + 16η ≤ ε′/2. Therefore, for µ = µ′ and ε = ε′ Lemma 6.5.4

implies

Pµ′′ [|E({u}, B2) ∩ T | = 1, |E({v}, B2) ∩ T | = 1, |δ(w) ∩ T | = 2] ≥ ε′
2

2000
.

To prove the lemma it remains to show for T ∼ µ′′ |T ∩ E({u}, A2)| = 1 and |T ∩ E({v}, A2)| = 1

occur with a constant probability. Since T ∼ µ′′ is a spanning tree in the induced subgraph G[A] =

G[A2 ∪ {u, v}, it is sufficient to show T ∼ µ′′ is also a spanning tree in the induced subgraph G[A2]

with a constant probability. Furthermore, since for T ∼ µ′′ random variables which are functions of

edges inside A are independent edges outside A2,

Pµ [HC2(T )] ≥ (1− 12η)Pµ′ [HC2(T )]

≥ (1− 12η)Pµ′′ [HC2(T )] · Pµ′ [|T ∩ E(A)| = |A| − 1]

≥ 0.5 · Pµ′′ [|T ∩ E({u}, B2)| = 1, |T ∩ E({v}, B2)| = 1, |T ∩ δ(w)| = 2]

· Pµ′′ [|T ∩ E(A2)| = |A2| − 1]

Finally by Theorem 2.9.11

Eµ′′ [|T ∩ E(A2)|] ≥ Eµ′ [|T ∩ E(A2)|] ≥ Eµ [|T ∩ E(A2)|] = z(E(A2)) ≥ |A2|−1−(1/2−ε)−4η−O(1/n).
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u2

v2

u1

v1

. . .A2B2A1B1
. . . C2C1

Figure 6.5.7: Setting in Lemma 6.5.9

where the second inequality follows by Corollary 2.9.9. So, Pµ′′ [|T ∩ E(A2)| = |A2| − 1] ≥ 1/2.

The lemma implies the following Corollary.

Lemma 6.5.9. Let P ∈ U0(η) for η < 1/1000, C1 → C2 ∈ P be exceptional 4-cut classes with child

connectors A1, A2 and father-connectors B1, B2. If |A1 −A2| = 2, then

P [HC1(T ),HC2(T )] ≥ 1/2000.

So, P has good thread edges of fraction at least 3/2.

Proof. Let u1, v1 be the singletons of C1, and u2, v2 be the two singletons of C2 (see Figure 6.5.7).

The proof is very similar to Lemma 6.4.3. Let F := E(A2), I := E(A1, B1) ∪ E(A2, B2) ∪
{{u1, v1}, {u2, v2}}. First we condition on |T ∩ I| = 0. Then we condition on |T ∩ E(B1)| =

|B1| − 1. Let µ′′ be the resulting distribution. The important observation is that for any T ∼ µ′′,

HC1(T ),HC2(T ) occur if and only if |T ∩ F | = |A2| − 1 = rank(F ) and |T ∩ E({u1}, B1)| =

|T ∩ E({v1}, B1)| = 1. So,

P [HC1(T ),HC2(T )] = P
[
|T ∩ I| = 0, |T ∩ E(B1)| = |B1| − 1

]
· Pµ′′ [HC1(T ),HC2(T )]

≥ 2/5 · Pµ′′ [|T ∩ E(A2)| = |A2| − 1] · Pµ′′ [|T ∩ E({v1}, B1)| = |T ∩ E({u1}, B1)| = 1]

where we used Eµ [|T ∩ I|] ≤ 24η ≤ 1/20, Eµ
[
|T ∩ E(B1)|

]
≥ 1/2− 2η. Similar to Lemma 6.4.3 the

first term of the RHS occur with probability at least 1/2 − 1/20 and the second term occur with

probability at least 1/20.

Now we are ready to prove Lemma 6.5.7:

Proof of Lemma 6.5.7. Let {u}, {v} be the singletons of C3. If |A2 −B3| > 2 then by Lemma 6.5.1

P has good thread edges of fraction at least 3/8 and we are done. If A2 − B3 = {u′, v′} then if

x{u′,v′} ≥ ε/4 then we are done by Lemma 6.5.1. If x{u′,v′} < ε/4 then we must have x{u′,u} ≥ 1/3
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or x{u′,v} ≥ 1/3. But by Lemma 6.5.8 either of these edges are good and we are done. Similarly, if

A2 −B3 = {u′} then P has a good edge {u′, u} or {u′, v} of fraction at least 1/3.

So, it must be the case that A2 = A3. If C2 has four atoms then we are done by Lemma 6.5.9.

So, C2 has two atoms. Note that C2 shows that the cut (B3, B3) is a (1 + η) near minimum cut.

Now, we consider two cases. FIrst assume |A1 − A2| = 0. Since C1 6= C2, we have C1 is an

exceptional 4-cut class and A1 = B3. Then, by Lemma 6.5.9 HC1(T ),HC2(T ) occur with a constant

probability. And, any edge between the singletons of C1 and C3 is good. So, we are done.

Finally, suppose 1 ≤ |A1 − A2| ≤ 2. Similar to above if x(E(A1 − A2)) ≥ ε/4 then we are done

by Lemma 6.5.1, and otherwise there is an edge of fraction at least 1/3 from a vertex in A1 −A2 to

u or v which is a good edge by Lemma 6.5.8.
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Chapter 7

Background

In this chapter we set up notations for all parts of part 2 of the thesis. We also review several

technical backgrounds and theorems that we will use to prove our theorems.

Let G = (V,E) be an undirected (weighted) graph with n := |V | vertices. In this thesis we only

work with finite graphs, although some our results naturally generalize to infinite graphs. FIrst, we

define some functions and operators on graph G. Note that when the graph is clear in the context

we directly work with these operators, but in some of the proof we work subgraphs of G in that case

we use subscripts to differentiate between the value of a function on G or its subgraphs.

For all pair of vertices u, v ∈ V let wu,v be the weight of the edge between u and v. We assume

G is undirected, therefore, w(u, v) = w(v, u) for all pair of vertices. Also, for each vertex v ∈ V

let w(v) :=
∑
u∈V w(v, u). The volume of a set S ⊆ V is the summation of the weighted degree of

vertices in S,

vol(S) :=
∑
v∈S

w(v).

We write `2(V ) for the Hilbert space of functions f : V → R. We use 0 to denote the all zero

function, 0(v) = 0 for all v ∈ V and 1 to denote the all 1 function. For two functions f, g : V → C
we define the ordinary inner product

〈f, g〉 :=
∑
v∈V

f(v) · g(v).

where g(v) is the conjugate of g(v). We say f and g are orthogonal if 〈f, g〉 = 0. If f, g ∈ `2(V )

then the above is simply 〈f, g〉 =
∑
v∈V f(v) · g(v). The norm of a function f ∈ `2(V ) is simply

‖f‖ :=
√
〈f, f〉.

152
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We also write `2(V,w) for the Hilbert space of functions f : V → R with inner product

〈f, g〉w :=
∑
v∈V

w(v) · f(v) · g(v),

and norm ‖f‖2w = 〈f, f〉w. This space will be useful when we deal with non-regular graphs. It is

recommended that readers assume that all of the graphs are regular and unweighted, thus all inner

products are ordinary.

Unless otherwise specified, we use A : CV → CV to denote the adjacency operator of G, where

for any function f ∈ CV and v ∈ V , Af(v) :=
∑
u∼v w(u, v)f(u), matrix of G. We also use D to

denote the diagonal degree operator, where for any v ∈ V Df(v) := w(v)f(v). In this thesis, for the

sake of brevity, we may use matrices and operators interchangeably. Since we only work with linear

operators this translation is always possible. For example, the entry in row u and column v of A is

defined as

A(u, v) = 〈A1v,1u〉 = w(u, v) · I [(u, v) ∈ E] ,

where I [.] is the indicator function, and 1u(v) := 1 if v = u and 1u(v) = 0 otherwise.

The support of a function f : V → R is the set of vertices with non-zero value in f .

supp(f) := {v : f(v) 6= 0}.

We say two functions f, g : V → R are disjointly supported if supp(f) ∩ supp(g) = ∅. We say f is

r-Lipschitz with respect to g if for all u, v ∈ V ,

|f(u)− f(v)| ≤ r · |g(u)− g(v)|.

7.1 Spectral Graph Theory

Let M ∈ CV×V be a square matrix. The kernel of M , ker(M) is the set of functions f : V → R such

that Mf = 0.

A scalar λ is an eigenvalue of M iff there is a non-zero function f : V → C such that

Mf = λf.

In that case we call f an eigenfunction of M . The eigen-space of λ is the linear space of all function

f where Mf = λf . For example, ker(M) is the same as the eigen-space of eigenvalue 0.

The above equation is equivalent to

(M − Iλ)f = 0.
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Since f is a non-zero function, the above equation is equivalent to

det(M − Iλ) = 0.

For a fixed matrix M , the function λ→ det(M − Iλ) is a univariate polynomial of degree |V | = n.

Therefore, it has n roots, or equivalently, M has n eigenvalues with multiplicities.

The adjoint of an operator M is the operator MT which satisfies the following. For any f, g ∈
V → Cn, 〈Mf, g〉 = 〈f,MT g〉. If M is a real matrix then MT is just the transpose of M . We say

M is self-adjoint with respect to the inner product 〈., .〉, if MT = M . Therefore, any real symmetric

matrix is self-adjoint. For example, the adjacency operator of A, or the degree operator D are self

adjoint.

Self-adjoint operators have several important properties that will be crucial in many proofs in

this thesis. First of all, all of their eigenvalues are real.

Lemma 7.1.1. All of the eigenvalues of any self-adjoint operator are real.

Proof. Let λ be an eigenvalue of a self-adjoint operator M with a non-zero eigenfunction f . Then,

λ ‖f‖2 = 〈λf, f〉 = 〈Mf, f〉 = 〈f,Mf〉 = 〈f, λf〉 = λ ‖f‖2 .

Since f 6= 0, λ = λ, and λ ∈ R.

Observe that since the eigenvalues of real symmetric matrices are real, their corresponding eigen-

function can be assumed to be real. In fact, for any function f : V → C, if it has non-zero

real/imaginary parts, then the imaginary/real parts of f provide an eigenfunctions of the same

eigenvalue.

Lemma 7.1.2. For any two eigenfunctions f, g of a self-adjoint operator M with corresponding

eigenvalues λ, λ′, if λ 6= λ′, or 〈f, g〉 = 0.

Proof.

λ〈f, g〉 = 〈λf, g〉 = 〈Mf, g〉 = 〈f,Mg〉 = 〈f, λ′g〉 = λ′〈f, g〉.

Therefore, 〈f, g〉 = 0.

From now on we assume M is a symmetric real matrix. Since the eigenvalues of M are real,

without loss of generality, we can assume the eigenfunctions are also real. So, all of the eigenfunctions

of M lie in the space `2(V ).

The next theorem is the fundamental theorem of spectral graph theory:

Theorem 7.1.3 (Spectral Theorem). Let M ∈ RV×V be a symmetric matrix. There are n real

eigenvalues λ1, . . . , λn together with n orthonormal functions f1, . . . , fn : V → R such that for all

1 ≤ i ≤ n, Mfi = λifi.



www.manaraa.com

CHAPTER 7. BACKGROUND 155

The next proof is based the lecture notes of Trevisan in the course of Spectral Graph Theory.

Proof. We prove this by induction. First, from the above arguments, M has at least one eigenfunction

f1 corresponding to an eigenvalue λ1. Suppose, we are given k orthonormal functions f1, . . . , fk

corresponding to λ1, . . . , λk. Let S ⊆ Rn be the space of all functions that are orthogonal to

f1, . . . , fk. We show that there is a function fk+1 ∈ S such that Mfk+1 = λk+1fk+1 for some

λk+1 ∈ R. This completes the proof of theorem.

First, observe that for any f ∈ S, Mf ∈ S. This is because for any 1 ≤ i ≤ k,

〈Mf, fi〉 = 〈f,Mfi〉 = λi〈f, fi〉 = 0. (7.1.1)

Let g1, . . . , gn−k be a basis for S. Let B : Rn−k → S be the following operator: Bh :=
∑n−k
i=1 h(i)·

gi. Also, let BT be the adjoint of B; in this case for g ∈ S, and 1 ≤ i ≤ n − k, BT g(i) = 〈g, gi〉.
Let M ′ := BTMB. Since for any g, h ∈ Rn−k, 〈BTMBg, h〉 = 〈g,BTMBh〉, M ′ is self-adjoint.

Therefore, it has an eigenfunction h with an eigenvalue λ ∈ R. Thus,

BTMBh = λh,

and

BBTMBh = λBh. (7.1.2)

Since Bh ∈ S, by equation (7.1.1), MBh ∈ S. On the other hand, BBT is an identity on S. This

is because for any g ∈ S, and 1 ≤ i ≤ n− k,

〈gi, BBT g〉 = 〈BT gi, BT g〉 = 〈gi, g〉.

Therefore, BBTMBh = MBh, and by equation (7.1.2) MBh = λBh. Thus, fk+1 = Bh is an

eigenfunction of M with eigenvalue λ.

One of the important consequence of the above theorem is that we can provide an explicit formula

for the M(u, v) in terms of the eigenvalues/eigenfunctions of M .

Corollary 7.1.4. Let M ∈ RV×V be a symmetric matrix with eigenvalues λ1, . . . , λn and the cor-

responding orthonormal eigenfunctions f1, . . . , fn. For any two functions f, g ∈ `2(V ),

〈Mf, g〉 =

n∑
i=1

λi · 〈fi, g〉 · 〈fi, f〉.

So, for any u, v ∈ V

M(u, v) = 〈M1u,1v〉 =

n∑
i=1

λi · fi(u) · fi(v).
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Proof. Let αi = 〈fi, f〉, βi = 〈fi, g〉. Since f1, . . . , fn form a basis of `2(V ),

〈Mf, g〉 =
〈
M

n∑
i=1

αifi,

n∑
i=1

βifi

〉
=
〈 n∑
i=1

λiαifi,

n∑
i=1

βifi

〉
=

n∑
i=1

λi · αi · βi.

We say M is positive semidefinite if all eigenvalues of M are non-negative. We also write M �M ′

if M ′ −M is positive semidefinite. We say M is non-singular if all eigenvalues of M are non-zero,

and it singular otherwise. Let λ1, . . . , λn be the eigenvalues of M with corresponding eigenfunctions

f1, . . . , fn. If M is non-singular, then the inverse of M , M−1 is defined as follows: the eigenfunctions

of M−1 are f1, . . . , fn with corresponding eigenvalues 1/λ1, . . . , 1/λn. In other words, the u, v entry

of M−1 is,

M−1(u, v) =

n∑
i=1

1

λi
· fi(u) · fi(v).

If M is singular, then we can define the pseudo-inverse of M , M†, as follows: the eigenfunctions

of M† are f1, . . . , fn, and for any 1 ≤ i ≤ n, if λi 6= 0, then the corresponding eigenvalue of fi is

1/λi, otherwise the corresponding eigenvalue of fi is 0. In other words, the u, v entry of M† is,

M†(u, v) =
∑
i:λi 6=0

1

λi
· fi(u) · fi(v).

Next, we describe an equivalent definition of eigenvalues and eigenfunctions as the optimizers of

a mathematical quantity.

Theorem 7.1.5 (Variational Characterization of Eigenvalues). Let M ∈ RV×V be a symmetric

matrix with real eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn, counted with multiplicities. For any k ≥ 1, and

any set of orthonormal functions g1, . . . , gk

λk+1 ≥ min
f∈`2(V )−0
f⊥g1,...,gk

〈Mf, f〉
〈f, f〉

. (7.1.3)

Furthermore, if Mgi = λigi for all 1 ≤ i ≤ k, then we have an equality and the minimizer is an

eigenfunction of λk+1.

Proof. Let f1, . . . , fk+1 be orthonormal eigenfunctions corresponding to λ1, . . . , λk+1. Since f1, . . . , fk+1

are orthogonal, there is a vector f ∈ span{f1, . . . , fk+1} such that f ⊥ g1, . . . , gk. But, by Corol-

lary 7.1.4,

〈Mf, f〉
〈f, f〉

=

∑k+1
i=1 λi〈f, fi〉2∑k+1
i=1 〈f, fi〉2

≤ λk+1.

Now, assume that Mgi = λigi. By the inductive proof of Theorem 7.1.3, there are orthonormal
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functions fk+1, . . . , fn such that Mfi = λifi for k + 1 ≤ i ≤ n, and such that for all 1 ≤ i ≤ k,

k + 1 ≤ j ≤ n, 〈fi, fj〉 = 0. Since g1, . . . , gk, fk+1, . . . , fn make a basis for the space of functions in

`2(V ), for any non-zero function f that is orthogonal to g1, . . . , gk, by Corollary 7.1.4, we have

〈Mf, f〉
〈f, f〉

=

∑n
i=k+1 λi〈f, fi〉2∑n
i=k+1〈f, fi〉2

≥ λk+1

The last inequality in the above equation is an equality only if 〈f, fi〉 = 0 for any i > k where

λi < λk. In other words, when f is in eigen-space of λk+1.

The following is a simple corollary of the above theorem.

Corollary 7.1.6. For any symmetric matrix M ∈ RV×V and 1 ≤ k ≤ n, the k-th eigenvalue of M ,

λk, satisfies

λk = min
f1,...,fk∈`2(V )

max
f 6=0

{ 〈Mf, f〉
〈f, f〉

, f ∈ span{f1, . . . , fk}
}
.

where the minimum is over k non-zero linearly independent functions in `2(V ).

Next we describe several important properties of eigenvalues.

Lemma 7.1.7. For any symmetric matrix M ∈ RV×V , with eigenvalues λ1, λ2, . . . , λn, we have

i) For any integer k ≥ 1, the eigenvalues of Mk are λk1 , . . . , λ
k
n.

ii) Let trace(M) :=
∑
v∈V M(v, v). Then,

trace(M) =

n∑
i=1

λi.

Proof. Let f1, . . . , fn be an orthonormal set of eigenfunctions corresponding to λ1, . . . , λn. (i) is

trivial,

Mkfi = λMk−1fi = . . . = λki fi.

To prove (ii) we use the spectral theorem. By Corollary 7.1.4,

trace(M) =
∑
v∈V
〈M1v,1v〉 =

∑
v∈V

n∑
i=1

λifi(v)2 =

n∑
i=1

λi
∑
v∈V

fi(v)2

=

n∑
i=1

λi ‖fi‖2 =

n∑
i=1

λi.
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7.2 Laplacian Matrix

The combinatorial Laplacian of G is defined by L = D − A. This matrix has several important

properties. First of all, for any function f ∈ `2(V ),

〈fL, f〉 =
∑

(u,v)∈E

w(u, v) · |f(u)− f(v)|2. (7.2.1)

Therefore, by Corollary 7.1.6 all of the eigenvalues of L are non-negative, and L is a positive semi-

definite matrix. Furthermore, the first eigenvalue of L is always 0 and the corresponding eigenfunc-

tion is any non-zero constant function.

When we are working with non-regular graphs it is straightforward to work with a normalized

variant of the Laplacian matrix. The normalized Laplacian matrix is given by

L := I −D−1/2AD−1/2.

Observe that for an unweighted, d-regular graph, we have L = 1
dL, thus, for any eigenfunction f of

A with eigenvalue λ, f is also an eigenfunction of L with corresponding eigenvalue of 1− λ/d.

Lf =
1

d
(D −A)f = If −Af/d = (1− λ/d)f

As we will show in Section 7.4 L is closely related to the transition probability matrix of simple

random walk on G. Therefore, analyzing the spectrum of L provides bounds on the spectrum of the

random walk matrix. As we will show in Chapter 9 these provide bounds on mixing time/return

probabilities of random walks.

Let g ∈ `2(V ) be a non-zero function and let f = D−1/2g. Then,

〈g,L g〉
〈g, g〉

=
〈g,D−1/2LD−1/2g〉

〈g, g〉
=

〈f, Lf〉
〈D1/2f,D1/2f〉

=

∑
u∼v

w(u, v)|f(u)− f(v)|2∑
v∈V

w(v)f(v)2
=: R(f), (7.2.2)

where we used (7.2.1). The latter value is referred to as the Rayleigh quotient of f (with respect to

G).

Unless otherwise specified, we use λ1 ≤ λ2 ≤ . . . ≤ λn to denote the eigenvalues of L. By

Corollary 7.1.6, for any 1 ≤ k ≤ n,

λk = min
f1,...,fk∈`2(V,w)

max
f 6=0

{
R(f) : f ∈ span{f1, . . . , fk}

}
, (7.2.3)
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where the minimum is over sets of k non-zero linearly independent functions in the Hilbert spaces

`2(V,w).

Next, we prove several properties of these eigenvalues.

λ1 = 0 : First, R(f) ≥ 0 for any f ∈ `2(V,w), by (7.2.3), λ1 ≥ 0. On the other hand, R(1) = 0.

Therefore, λ1 = 0, and the first eigenfunction is g = c · D1/21 for any constant c ∈ R.

Furthermore, L is a positive semidefinite operator.

λk = 0 iff G has at least k connected components: First observe that if G has k connected

components then we can define k linearly independent functions f1, . . . , fk where R(fi) = 0.

We just define each fi to be the indicator function of one of the connected components of G.

Conversely, suppose λk = 0, and let f1, f2, . . . , fk be the eigenfunctions corresponding λ1, . . . , λk.

Let F : V → Rk where for every v ∈ V , F (v) := (f1(v), . . . , fk(v)). This function is known

as the spectral embedding of G and we prove several of its properties in Section 8.1. Since

R(f1) = R(f2) = . . . = R(fk) = 0, R(F ) = 0. Therefore, the vertices in each connected

component of G are mapped to same vector in F . On the other hand, since f1, . . . , fk are

linearly independent, we have

|{F (v) : v ∈ V }| ≥ dim{F (v) : v ∈ V } ≥ k.

Henceforth, G has at least k connected components.

λn ≤ 2 and λn = 2 iff G is bipartite: First, we show λn ≤ 2. By (7.2.3),

λn = max f ∈ `2(V,w)R(f) ≤ max
f∈`2(V,w)

max
(u,v)∈E

|f(u)− f(v)|2

f(u)2 + f(v)2
≤ 2.

The last inequality in above equation is an equality iff for all (u, v) ∈ E, f(u) = −f(v), i.e.,

G is bipartite. On the other hand, if G = (X,Y,E) is a bipartite graph, we can simply let

f(v) = 1 for v ∈ X and f(v) = −1 for any v ∈ Y . It follows that R(f) = 2, thus λn = 2.

As we proved above just by knowing the second eigenvalue of L one can understand whether G

is connected, without executing any graph search algorithm. Although this relation does not give

any faster algorithm for detecting the connectivity of a graph, it is a simple example of relating an

algebraic property of the normalized Laplacian matrix to a combinatorial property of G. Another

example is the third property, that is just by knowing the last eigenvalue of L one can understand

whether G is bipartite. We will provide robust versions of several of above arguments together with

general versions of these relations later (see e.g. Chapter 10).

Although (7.2.3) provides an explicit characterization of eigenvalues, for many of the cases it

is hard to find the exact or approximate value of RHS. The following lemma that we proved in
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[KLL+13] provides an easy way to upper bound λk. This will be very useful when we analyze the

eigenvalues of graphs and relate them to cuts.

Lemma 7.2.1. For any graph G, k ≥ 1, and any k disjointly supported functions f1, f2, . . . , fk ∈
`2(V,w), the kth smallest eigenvalue of normalized Laplacian matrix L satisfies,

λk ≤ 2 max
1≤i≤k

R(fi).

Proof. By Corollary 7.1.6, it is sufficient to show that for any function f ∈ span{f1, . . . , fk}, R(f) ≤
maxiR(fi). Note that R(fi) = R(cfi) for any constant c, so we can assume f :=

∑k
i=1 fi. Since

f1, . . . , fk are disjointly supported, for any u, v ∈ V , we have

|f(u)− f(v)|2 ≤
k∑
i=1

2|fi(u)− fi(v)|2.

Therefore,

R(f) =

∑
u∼v w(u, v)|f(u)− f(v)|2∑

v∈V w(v) · f(v)2
≤

2
∑
u∼v

∑k
i=1 w(u, v)|fi(u)− fi(v)|2

‖f‖2w

=
2
∑k
i=1

∑
u∼v w(u, v)|fi(u)− fi(v)|2∑k

i=1 ‖fi‖
2
w

≤ 2 max
1≤i≤k

R(fi).

The next lemma shows that for any graph G there is a non-negative function f ∈ `2(V,w) such

that R(f) ≤ λ2 and vol(supp(f)) ≤ vol(V )/2. We will prove generalizations of this lemma in

Chapter 10.

Lemma 7.2.2. For any non-constant function g ∈ `2(V ) there are two non-negative disjointly

supported functions f+, f− ∈ V → R such that R(f+),R(f−) ≤ 4R(D−1/2g).

Proof. W.l.o.g. we assume that 〈g,1〉 = 0, otherwise we can work with g−Ev∈V [g(v)] instead. Also,

we assume ‖g‖ = 1. Let g+(v) := max{g(v), 0}, g−(v) := min{g(v), 0}. First we show that there are

two disjointly supported functions h+ and h− such that ‖h+‖2 , ‖h−‖2 ≥ 1/4. Then, we construct

f+, f− from h+, h−. W.l.o.g. we also assume that ‖g+‖2 < 1/4 (otherwise, if ‖g+‖2 , ‖g−‖2 ≥ 1/4 we

simply let f+ = D−1/2g+, f− = −D−1/2g−, and it is easy to see f+, f− satisfy lemma’s conclusion).

Now, let h = g + 1
2
√
n
1, and similarly let h+(v) := max{h(v), 0}, and h−(v) := min{h(v), 0}. Then,

‖h‖2 = ‖g‖2 +
1

4n
‖1‖2 = 5/4.
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where we used the fact that 〈g,1〉 = 0. Therefore,

‖h+‖2 = 5/4− ‖h−‖2 ≥ 5/4− ‖g−‖2 ≥
1

4

On the other hand,

‖h+‖2 ≤ ‖g+‖2 +
1

4n
‖1‖2 +

1

2
√
n

∑
v∈S

g(v) ≤ 1

2
+

1

2
‖g+‖ ≤ 1.

Thus, ‖h−‖2 ≥ 1/4. Now, since h is just a linear transformation of g, R(D−1/2h) = R(D−1/2g).

Now, let f+ = D−1/2h+, f− = −D−1/2h−. Then,

R(f+) =
〈Lh+, h+〉
‖h+‖2

≤ 4
〈Lh, h〉
‖h‖2

=
〈Lg, g〉
‖g‖2

= R(D−1/2g).

The same also holds for R(f−).

If in the previous Lemma g is an actual eigenfunction of L then a very tighter bound can be

proved.

Lemma 7.2.3 (Horry, Linial and Widgerson [HLW06]). Given a function g ∈ `2(V ) such that

Lg = λg for some λ > 0, there are two non-negative disjointly supported functions f+, f− ∈ `2(V,w)

such that R(f+),R(f−) ≤ λ.

Proof. Let g+ ∈ `2(V ) be the function with g+(u) = max{g(u), 0} and g− ∈ `2(V ) be the function

with g−(u) = min{g(u), 0}. Then, for any vertex u ∈ supp(g+),

( Lg+)(u) = g+(u)−
∑
v:v∼u

w(u, v)g+(v)√
w(u)w(v)

≤ g(u)−
∑
v:v∼u

w(u, v)g(v)√
w(u)w(v)

= ( Lg)(u) = λ · g(u).

Therefore,

〈g+,  Lg+〉 =
∑

u∈supp(g+)

g+(u) · ( Lg+)(u) ≤
∑

u∈supp(g+)

λ · g+(u)2 = λ · ‖g+‖2 .

Letting f+ = D−1/2g+, we get

λ ≥ 〈g+,  Lg+〉
‖g+‖2

=
〈f+, Lf+〉
‖f+‖2w

= R(f+).

Similarly, we can define f− = −D−1/2g−, and show that R(f−) ≤ λ.
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7.3 Cayley Graphs and Their Spectrum

In this section we compute eigenvalues/eigenfunctions of several useful graphs including Cycle, Hy-

percube, Grid, etc. These examples will be useful when we show tightness of our theorems/analysis.

The material of this section is mainly based on Luca Trevisan’s lecture notes.

Let Γ be a finite group. We will use additive notation, although the following definition applies

to non-commutative groups as well. A subset S ⊆ Γ is symmetric if a ∈ S ⇐⇒ −a ∈ S.

Definition 7.3.1. For a group Γ and a symmetric subset S ⊆ Γ, the Cayley graph Cay(Γ, S) is the

graph whose vertex set is Γ, and such that (a, b) is an edge if and only if b − a ∈ S. Note that the

graph is undirected and |S|-regular.

We can also define Cayley weighted graphs: if w : Γ→ R is a function such that w(a) = w(−a)

for every a ∈ Γ, then we can define the weighted graph Cay(G,w) in which the edge (a, b) has weight

w(b− a). We will usually work with unweighted graphs.

For example, the n-vertex cycle can be realized as the Cayley graph Cay(Z/nZ, {−1, 1}). The
√
n×
√
n torus can be realized as the Cayley graph

Cay((Z/
√
nZ)× (Z/

√
nZ), {(−1, 0), (1, 0), (0,−1), (0, 1)}).

Also, the h-dimensional hypercube can be realized as the Cayley graph

Cay((Z/2Z)h, {(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1)})

where the group is the set {0, 1}h with the operation of bit-wise xor, and the set S is the set of

bit-vectors with exactly one 1.

Definition 7.3.2 (Character). For a group Γ, a function f : Γ→ C is a character of Γ if

• f is a group homomorphism of Γ into the multiplicative group C− {0}.

• for every a ∈ Γ, |f(a)| = 1.

It turns out that any finite abelian group, Γ, has exactly |Γ| characters, and these characters are

exactly the eigenfunctions of the graph Cay(Γ, S) for any symmetric S ⊆ Γ. Next we describe the

characters of an abelian group Γ and the corresponding eigenvalues.

Recall that every finite abelian group is isomorphic to a product of cyclic groups

(Z/n1Z)× (Z/n2Z)× . . .× (Z/nkZ).

First of all, for all 0 ≤ r ≤ n− 1, the cyclic group (Z, nZ) has a character,

χr(a) = e2πiar/n.
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Now, if χ1 is a character of Γ1 and χ2 is a character of Γ2, then χ(a, b) := χ1(a) ·χ2(b) is a character

of Γ1 × Γ2.

Theorem 7.3.3. For any finite abelian group, Γ, a symmetric set S ⊆ Γ, and a character χ : V → C,

χ is a eigenfunction of the adjacency operator of the graph G = Cay(Γ, S). with the corresponding

eigenvalue of

λ =
∑
a∈S

χ(a).

Now we are ready to study the spectrum of Cycle,Grid, and the hypercube.

7.3.1 The Cycle

A cycle with n vertices is the Cayley graph Cay(Z/nZ, {1,−1}) with characters χr(a) = e2πira/n

for all 0 ≤ r ≤ n − 1. By Theorem 7.3.3 these are the eigenfunctions of the normalized Laplacian

matrix of a cycle with corresponding eigenvalues,

λr = 1− 1

2
(e2πir/n + e−2πir/n) = 1− cos(2πr/n)

where we used the fact that cycle is a 2-regular graph, and that eix = cos(x)+i sin(x). Consequently,

for k ≤ n/2π,

λk =
1

2!

(2πk

n

)2

− 1

4!

(2πk

n

)4

+ . . . = Θ(k2/n2).

7.3.2 The Grid

Let G be a n = l × l torus with characters

χr1,r2(a, b) = e2πir1a/l · e2πir2a/l

for all 0 ≤ r1, r2 ≤ l−1. By Theorem 7.3.3, these are the eigenfunctions of the normalized Laplacian

matrix of G with corresponding eigenvalues,

λr1,r2 = 1− 1

4
(e2πir1/l + e−2πir1/l + e2πir2/l + e−2πir2/l) = 1− cos(2πr1/l)/2− cos(2πr2/l)/2.

This implies that for any k ≤ n/4π2,

λk ≤ max
0≤r1,r2≤

√
k
λr1,r2 ≤ 1− cos(2πk/l) = Θ(k2/l2) = Θ(k/n).

On the other hand,

λk ≥ min
r1
√
k or r2≥

√
k
λr1,r2 ≥ 1− cos(2πk/l)/2 = Θ(k/n).
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Therefore, the kth smallest eigenvalue of the normalized Laplacian of G is λk = Θ(k/n).

7.3.3 The Ladder

Let Γ = (Z/nZ)× (Z/2Z). For any 0 ≤ r ≤ n− 1 and s ∈ {0, 1}, this group has the characters

χr,s(a, b) = e2πira/l(−1)b,

Let S = {(1, 0), (−1, 0), (0, 1)} with the following weights, w((1, 0)) = w((−1, 0)) = 1 and w(0, 1) =

100/l2. The ladder is the Cayley graph G = Cay(Γ, S) (see Figure 7.8.1 for an illustration). The

eigenfunctions of the normalized Laplacian matrix are χr,s with corresponding eigenvalues,

λr,s = 1− 1

2 + 100/l2
(e2πir/l + e−2πir/l + (−1)s · 100/l2) = 1− 2 cos(2πr/l) + (−1)s · 100/l2

2 + 100/l2

Therefore, for r > 0, we get

λr,0 ≤
2π2r2

l2 + 50
, and λ0,1 =

100

l2 + 50

Consequently, λ2 = λ1,0 and λ3 = λ2, 0, and the eigenfunction corresponding to λ2 is χ1,0.

7.3.4 The Hypercube

The group (Z/2Z)h = {0, 1}h with bitwise xor has 2h characters; for every r ∈ {0, 1}h there is a

character χr : {0, 1}d → {−1, 1} defined as

χr(a) = (−1)
∑h
i=1 r(i)a(i)

Let us denote the set S by {11, . . . ,1h}, where we let 1j ∈ {0, 1}h denote the bit-vector that has

a 1 in the jth position, and zeroes everywhere else. Recall that a hypercube is the Cayley graph

G = Cay({0, 1}h, S). This means that, for every r ∈ {0, 1}h, the corresponding eigenvalue of the

normalized Laplacian matrix is

λr = 1− 1

h

h∑
i=1

χr(1i) = 1− 1

h

h∑
i=1

(−1)r(i) = 1− 1

h
(h− 2 ‖r‖1) = 2 ‖r‖1 /h

where we used the fact that G is h-regular. For example, λ2 = λ3 = . . . = λh+1 = 2/h. In general,

for any 0 ≤ j ≤ h, and k =
(
h
0

)
+
(
h
1

)
+ . . .+

(
h
j

)
we have

λk+1 = λk+2 = . . . = λk+( h
j+1)

=
2(j + 1)

h
.
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7.4 Random Walks

We shall consider lazy random walks onG where from each vertex u, with probability 1/2 we stay at u,

and with probability w(u, v)/(2w(u)) we jump to the neighbor v of u. We write P := 1/2(I+D−1A)

for the transition probability operator of the lazy random walk on G, where I is the identity operator.

Observe that in the matrix representation, P (u, v) = w(u, v)/(2w(u)), and P (v, v) = 1/2. We may

also work with adjoint of P , PT = 1/2(I +AD−1). Observe that for a function f ∈ RV ,

PT f(u) =
∑
v∈V

w(v, u)f(v)/2w(v).

Although P is not a symmetric matrix (or a self-adjoint operator), it features many properties

of the symmetric matrices. First of all, P can be transformed to a symmetric matrix simply by

considering D1/2PD−1/2. Furthermore, for any eigenfunction f of D1/2PD−1/2 with eigenvalue λ,

D−1/2f is an eigenfunction of P and D1/2f is an eigenfunction of PT both with eigenvalue λ. This

is because,

D1/2PD−1/2f = λf ⇒

PD−1/2f = λD−1/2f.

DPD−1D1/2f = PTD1/2f = λD1/2f.

Note that for any eigenfunction f of P , Df is an eigenfunction of PT . Therefore, eigenvalues of P

and PT are exactly the same and they are all real. On the other hand, since

D1/2PD−1/2 = 1/2(I +D−1/2AD−1/2) = I − 1/2(I −D−1/2AD−1/2 = I − L/2,

the eigenfunctions of D1/2PD−1/2 and L are the same, and the kth largest eigenvalue of P is equal

to 1 minus half of the kth smallest eigenvalue of L. That is, the eigenvalues of P are

1 = 1− λ1/2 ≥ 1− λ2/2 ≥ . . . ≥ 1− λn/2 ≥ 0.

Thus, P is also a positive semi-definite operator. The following lemma summarizes the above

discussion

Lemma 7.4.1. Matrix P has eigenvalues 1 − λ1/2, . . . , 1 − λn/2 with corresponding orthonormal

eigenfunctions f1, . . . , fn ∈ `2(V,w). That is 〈fi, fj〉w = 0 for any i 6= j and ‖fi‖w = 1 for all i.

Here λ1, . . . , λn are eigenvalues of L.

Recall that the eigenfunction of L corresponding to λ1 = 0 is D1/21. Therefore, the eigenfunction

corresponding to eigenvalue of 1 of P is the constant function, and the corresponding eigenfunction

of PT is c ·D1 for any c ∈ R. Let π := D1/vol(V ), i.e., π(v) := w(v)/vol(V ), for all v ∈ V . We call

π the stationary distribution of the random walk.

Unless otherwise specified, we use Xt as a random variable to denote the tth step of a lazy
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random walk. For example, X0 shows the starting vertex. We say a non-negative function q ∈ RV

is a probability distribution on G, if
∑
v∈V q(v) = 1. Observe that if q is a probability distribution on

G, then so is PT q. Indeed, PT q is the probability distribution of the random walk after one step,

P [X1 = v | X0 ∼ q] = PT q(v),

where X0 ∼ q means that X0 is distributed with q. Similarly (PT )tq is the distribution of the

walk after t steps. The fundamental theorem of Markov chains implies that if G is connected, then

limt→∞ (PT )
t
q = π. This is the reason that π is called the stationary distribution of the walk.

The mixing time of a random walk is the time it takes to get to the stationary distribution. More

formally, the ε-mixing time in norm p is defined as follows,

τp(ε) := min
{
t : ∀u ∈ V,

(∑
v∈V

∣∣∣P t(u, v)

π(v)
− 1
∣∣∣pπ(v)

)1/p

≤ ε
}
.

In particular, τ1(ε) is called, mixing time in total variation distance, and τ∞(ε) is called the uniform

mixing time. Note that for ε ≈ 0, the above equation implies the for all u ∈ V , the uth row of P t

is approximately equal to π(.). This is the same as (PT )tq is approximately equal to π(.) for any

distribution q on G.

In the next lemma we upper bound the mixing time of the lazy random walk in terms of λ2.

Lemma 7.4.2. Let πmin := minv∈V π(v). For any connected graph G, and p ≥ 1 and ε < 1,

τp(ε) ≤
−2 log(πmin) log(1/ε)

λ2
.

The following proof is based on [LPW06, Thm 12.3].

Proof. Let f1, f2, . . . , fn ∈ `2(V,w) be orthonormal eigenfunctions of P corresponding to eigenvalues

1− λ1/2, 1− λ2/2, . . . , 1− λn/2. By the above argument f1 is a constant function, since ‖f1‖w = 1,

we must have

f1 = 1/
√

vol(V ). (7.4.1)

Since f1, . . . , fn form a basis in `2(V,w), for any v ∈ V we have,

1v =

n∑
i=1

〈1v, fi〉w · fi =

n∑
i=1

fi(v)w(v) · fi.

Therefore, for any v ∈ V ,

P t1v = P t
n∑
i=1

fi(v)w(v)fi =

n∑
i=1

fi(v)w(v)λtifi.
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Hence, for any pair of vertices u, v ∈ V ,

∣∣∣P t(u, v)

π(v)
− 1
∣∣∣ =

∣∣∣vol(V ) ·
n∑
i=1

fi(v)(1− λi/2)tfi(u)− 1
∣∣∣ = vol(V )

n∑
i=2

|fi(v)(1− λi/2)tfi(u)|

≤ vol(V )(1− λ2/2)t
n∑
i=2

|fi(v)fi(u)|

≤ vol(V )e−tλ2/2

√√√√ n∑
i=1

fi(v)2

n∑
i=1

fi(u)2

(7.4.2)

where the second equality follows by equation (7.4.1), and that λ1 = 0, and the last inequality

follows by the Cauchy-Schwarz inequality. On the other hand, for any v ∈ V ,

n∑
i=1

fi(v)2 =

n∑
i=1

〈fi,1v〉2 =

n∑
i=1

〈fi, D−11v〉2w =
1

w(v)2
‖1v‖2w =

1

w(v)
(7.4.3)

Putting equations (7.4.2) and (7.4.3) together we get,

∣∣∣P t(u, v)

π(v)
− 1
∣∣∣ =

e−tλ2/2√
π(v)π(u)

≤ e−tλ2/2

πmin

Therefore, τp(ε) ≤ −2 log(πmin) log(1/ε)/λ2 for any p ≥ 1.

Suppose we run a random walk from a vertex u ∈ V , and let q be the probability d In the next

lemma we show that if G is a connected graph

7.5 Gaussian Distribution

The normal distribution with mean µ and variance σ2, N (µ, σ2) has probability density function

1

σ
√

2π
e
−(x−µ)2

2σ2

A random l dimensional Gaussian vector is a vector ζ = (ζ1, ζ2, . . . , ζl) where each ζ1, . . . ζl is

chosen independently from N (0, 1).

Next, we recall several important properties of the normal distribution.

P1) If ζ1 ∼ N (µ1, σ
2
1) and ζ2 ∼ N (µ2, σ

2
2) are chosen independently then ζ1 + ζ2 ∼ N (µ1 +µ2, σ

2
1 +

σ2
2). Consequently, Gaussian vectors are spherically symmetric in the sense that for any vector

x ∈ Rh, the distribution of 〈x, ζ〉 is the same as a N (0, ‖x‖2). Therefore, for l ∈ N, the expected
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norm of the vector ζ is

E
[
‖ζ‖2

]
=

l∑
i=1

E
[
ζ2
i

]
= l.

P2) For any s ∈ R,

1√
2π

(
1

s
− 1

s3
)e−s

2/2 ≤ Pζ∼N (0,1) [ζ ≥ s] ≤ 1

s ·
√

2π
e−s

2/2.

This property is proved in [Fel68, Ch. VII].

In the next lemma we prove a Chernoff bound on sum of squares of independent Gaussian random

variables. Similar bounds can be found in [Mat02, Ch. 15] or [LT11, Ch. 1]).

Lemma 7.5.1. Let ζ1, . . . , ζl ∼ N (0, 1) be l independent Gaussian random variables. For any r ≥ 2,

P

[
l∑
i=1

ζ2
i > r · l

]
≤ e−rl/14.

Also, for any 0 < δ < 1,

P

[
l∑
i=1

ζ2
i > (1 + δ) · l or

l∑
i=1

ζ2
i < (1 + δ) · l

]
≤ 2e−δ

2l/8.

Proof. First, observe that, for ζ ∼ N (0, 1), and α < 1/2, and σ2 = 1/(1− 2α),

E [exp(α · ζ)] =

∫ ∞
−∞

1√
2π
e−x

2(1/2−α)dx =

∫ ∞
−∞

1√
2π
e−

x2

2σ2 dx = (1− 2α)−1/2

Let X = ζ2
1 + . . .+ ζ2

l . For α < 1/2, and s > 0 we get

P [X > s] = P [exp(α ·X) > exp(α · s)] ≤ E [exp(α ·X)]

exp(α · s)
=

∏l
i=1 E

[
exp(α · ζ2

i )
]

exp(α · s)
≤ (1− 2α)−l/2

exp(α · s)

where the first inequality follows by the Markov inequality and the second inequality follows by the

fact that ζ1, . . . , ζl are independent random variables. Now, if s ≥ 2l, for α = 1/4 we get

P [X > s] ≤ e−αs(1− 2α)−l/2 ≤ e−s/4+0.35l ≤ e−s/14.

Otherwise, let α = (s− l)/(4l). Since 2α ≤ 1/2,

P [X > s] ≤ e−α·s+α·l+2lα2

= e−
(s−l)2

4l +
(s−l)2

8l = e−
(s−l)2

8l . (7.5.1)

where we used the taylor series of (1− 2α)−1.
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Similarly, for 0 < s < l,

P [X < s] = P [exp(−α ·X) > exp(−α · s)] ≤ E [exp(−α ·X)]

exp(−α · s)
≤
∏l
i=1 E

[
exp(−αζ2

i )
]

exp(−α · s)
≤ (1 + 2α)−l/2

exp(−α · s)

For α = (s − l)/(4l) we can argue similar to equation (7.5.1), and we get P [X < s] ≤ exp(−(s −
l)2/(8l)).

Let ζ1, ζ2, . . . , ζl be i.i.d. k-dimensional Gaussians, and consider the random mapping Γk,l :

Rk → Rl defined by

Γk,l(x) = l−1/2(〈ζ1,x〉, 〈ζ2,x〉, . . . , 〈ζl,x〉). (7.5.2)

From P1, for every x ∈ Rk,

E
[
‖Γk,l(x)‖2

]
= ‖x‖2 . (7.5.3)

Since Gaussians are spherically symmetric, up to a change of basis, we can assume x = (1, 0, 0, . . . , 0).

Therefore, the following basic estimates follow from Lemma 7.5.1. For every 0 < δ < 1,

P
[
‖Γk,l(x)‖2 /∈ [(1− δ)‖x‖2, (1 + δ)‖x‖2]

]
≤ 2e−δ

2l/8 , (7.5.4)

and for every λ ≥ 2,

P
[
‖Γk,l(x)‖2 ≥ r‖x‖2

]
≤ e−rl/14 . (7.5.5)

Corollary 7.5.2. Let ζ ∈ Rl be a random l-dimensional Gaussian vector. For a sufficiently large

l, and any unit vector x ∈ Rl,

P
[
|〈ζ,x〉|
‖ζ‖

≥ 2

3
√
l

]
≥ 1/2.

Proof. By P1 we can assume that x = (1, 0, 0, . . . , 0). Also let ζ = (ζ1, . . . , ζl). Therefore,

P [|〈ζ,x〉| > 0.67] = P [|ζ1| > 0.67] > 1/2.

where the last equation follows by computing the cumulative distribution of the standard normal

distribution. On the other hand, by Lemma 7.5.1, for a sufficiently large l, ‖ζ‖2 < l(1 + 0.01) with

high probability. Putting these together the claim follows by the union bound.

7.6 Eigenfunction Computation

In general, it is not possible to exactly compute eigenfunctions of a matrix. This is because the

values assigned to vertices in an eigenfunction are not necessarily rational (e.g. the cycle graph).

Therefore, spectral algorithms cannot leverage the exact value of eigenfunctions, they should rather

be stable and work with approximate eigenfunctions. All of spectral algorithms designed in this

thesis work with any arbitrary functions as long as they have sufficiently small Rayleigh quotient.
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In this section we provide fast algorithms for approximating eigenfunctions of the normalized

Laplacian matrix. The materials of this section is mainly based on [Vis13, Ch 8].

Proposition 7.6.1. For any symmetric positive semidefinite matrix M ∈ RV×V , an error parameter

ε > 0, sufficiently large n and a positive integer k > 1
ε · log 18n

4ε , a random Gaussian function

g ∈ N (0, 1)V (i.e., g(v) ∼ N (0, 1) for all v ∈ V ), and f = Mkg/
∥∥Mkg

∥∥ we have

Pg∼N (0,1)V

[
〈Mf, f〉
〈f, f〉

≥ (1− ε)λn
]
≥ 1/2,

where λn is the largest eigenvalue of M in absolute value.

Proof. Let f1, . . . , fn be the eigenfunctions of M with corresponding eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn.

Let ḡ = g/ ‖g‖, and let αi := 〈ḡ, fi〉. By Corollary 7.5.2, with probability 1/2, αn = |〈ḡ, fn〉| ≥
2/3
√
n. Let f = Mkḡ be such a function. Let l be the largest index such that λl ≥ (1− ε/2)λn. By

Corollary 7.1.4

〈f, f〉 =

n∑
i=1

α2
iλ

2k
i ≤ (1− ε/2)2kλ2k

n +

n∑
i=l

α2
iλ

2k
i ≤ exp(−εk/2) +

n∑
i=l

α2
iλ

2k
i ≤

n∑
i=l

(1 + ε/2)α2
iλ

2
i k.

where the second inequality follows by the fact that (1− ε/2) ≤ exp(−ε/2). Therefore,

〈Mf, f〉
〈f, f〉

=

∑n
i=1 α

2
iλ

2k+1
i∑n

i=1 α
2
iλ

2k
i

≥
∑n
i=l α

2
iλ

2k+1
i∑n

i=l(1 + ε/2)α2
iλ

2k
i

≥ λl
1 + ε/2

≥ (1− ε/2)λn
1 + ε/2

≥ (1− ε)λn.

Let us describe an application of above proposition in approximating the second eigenfunctions

of L. Equivalently, we can find the eigenfunction corresponding to the second largest eigenvalue of

I−L/2. Since the largest eigenfunction of I−L/2 is g1 = D1/21 we can run the above power method

in the space of functions orthogonal to g1 = D1/21 by removing the component along g1, i.e., letting

f = f − 〈f, g1〉g1. Now, if we run the power method, f converges to the second eigenfunction of

L, g2. So, by the above proposition, we need ε = O(λ2) to get a constant factor approximation of

λ2. But this means that the running the of the power method is Õ((m+ n)/λ2) which can become

worst than quadratic even on a cycle.

So, in the rest of this section we describe an alternative approach that is based on recent devel-

opments on fast Laplacian solvers [ST04, KMP10, KMP11, KOSZ13].

The following is the main theorem of this section [ST04].

Theorem 7.6.2. For any undirected graph G on n vertices and m edges and ε < 1/2, there is an

algorithm that outputs a function a function g2 : V → R such that 〈g2,1〉 = 0 and R(D−1/2g2) ≤
(1 + 5ε)λ2, where λ2 is second smallest eigenvalue of L and the algorithm runs in Õ(m + n) time

where we avoid the polylog(n) factors.
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Instead of applying the above power method to I − 2L we can apply it to the psuedo-inverse

of L, L†. Since the largest eigenvalue of L† is 1/λ2 we can get a constant factor approximation by

running the power method only for Θ(log n) iterations. But the problem is that we are not aware

of any near linear time algorithm that computes L†.
The idea is that we can compute L†f for a given function f by solving the linear system of

equations Lg = f . We can use the following theorem that is based on recent developments on fast

Laplacian solvers [ST04, KMP10, KMP11, KOSZ13] to approximately solve this linear system.

Theorem 7.6.3 ([Vis13, Section 3]). There is an algorithm which takes as input L, the Laplacian

of a graph G, a function g ∈ `2(V ), and an error parameter ε > 0, and returns the function Zg

where Z is a symmetric linear operator such that

(1− ε)Z† � L � (1 + ε)Z†.

The algorithm runs in O(m log n log 1/ε) time where m is the number of edges of G.

Here, we do not prove but we refer the interested reader to [Vis13].

Note that the above equation means that the matrices Z† and L are co-spectral, mathematically,

for any function f : V → R,

(1− ε)〈f, Z†f〉 ≤ 〈f, Lf〉 ≤ (1 + ε)〈f, Z†f〉.

Let Z = D−1/2ZD−1/2. It follows from the above equation that so for any g : V → R and

f = D−1/2g,

(1− ε)〈g,Z†g〉 = (1− ε)〈f, Z†f〉 ≤ 〈f, Lf〉 = 〈g,Lg〉 ≤ (1 + ε)〈f, Z†f〉 ≤ (1 + ε)〈g,Z†g〉.

Therefore,

(1− ε)Z† � L � (1 + ε)Z†. (7.6.1)

Now, we are ready to prove Theorem 7.6.2.

Proof of Theorem 7.6.2. Let f1, f2, . . . , fn be the eigenfunctions of Z† corresponding to the eigen-

values θ1 ≥ θ2 ≥ . . . θn = 0 (note that for this proof we label the eigenvalues in decreasing order).

Let g ∼ N (0, 1)V , ḡ = g/ ‖g‖, and αi := 〈ḡ, fi〉. Again by Corollary 7.5.2 with probability at least

1/2, |α1| ≥ 2/3
√
n; assume that ḡ satisfies this.

Let f = Zkḡ for k = O( 1
ε log(n/ε)), note that k does not have any dependency to the eigenvalues
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of Z. Let j be the smallest such that θj ≤ (1 + ε)θn−1. Then,

〈f,Z†f〉
〈f, f〉

=

∑n−1
i=1 α

2
i θ

(2k−1)
i∑n−1

i=1 αiθ
−2k
i

≤
∑j
i=1 α

2
i θ
−(2k−1)
i∑n−1

i=1 α
2
i θ
−2k
i

+

∑n−1
i>j α

2
i θ
−(2k−1)
i∑n−1

i>j α
2
i θ
−2k
i

≤
∑j
i=1 α

2
i θ
−(2k−1)
i

α2
n−1θ

−2k
n−1

+ θj

≤ θn−1

∑j
i=1 α

2
i (1 + ε)−(2k−1)

α2
n−1

+ (1 + ε)θn−1

≤ θn−1 ·
9n

4

j∑
i=1

α2
i e
− ε(2k−1)

2 (1 + ε)θn−1

≤ θn−1 · ε+ (1 + ε)θn−1 ≤ (1 + 2ε)θn−1.

where the third last inequality follows by 1/(1 + x) ≤ e−x/2 for x ≤ 1, and the second to last

inequality follows by choosing k ≥ (log(9n/4ε) + 1/2)/ε. Therefore, by (7.6.1)

〈f,Lf〉
〈f, f〉

≤ (1 + ε)
〈f,Z†f〉
〈f, f〉

≤ (1 + ε)(1 + 2ε)θn−1 ≤
(1 + ε)(1 + 2ε)

(1− ε)
λ2 = (1 + 5ε)λ2.

Letting g2 = f/ ‖f‖ completes the proof.

The following corollary proved by Sachdeva and Vishnoi generalizes Theorem 7.6.2 to multiple

eigenfunctions.

Corollary 7.6.4 ([SV]). For any undirected graph G on n vertices and m edges and any k ≥ 1,

there is an algorithm that outputs orthonormal functions f1, f2, . . . , fk ∈ `2(V,w) such that for all

1 ≤ i ≤ k, R(fi) ≤ 2λi. and runs in Õ(k(m+ n)) time where we avoid the polylog(n) factors.

The proof of the above corollary essentially follows from a repeated application of Theorem 7.6.2

and Theorem 7.1.5.

7.7 Expansion, Conductance and Sparsest Cut

For a set S ⊆ V , we write

E(S, S) := {(u, v) : u ∈ S, v /∈ S}

to denote the set of edges in the cut (S, S). We also use

w(S, S) :=
∑

(u,v)∈E(S,S)

w(u, v)

to denote the sum of the weight of edges in the cut (S, S).
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The conductance of a set S is the ratio of the fraction of edges in the cut (S, S) w.r.t. the volume

of S,

φ(S) :=
w(S, S)

vol(S)
.

Observe that for any set S ⊆ V , 0 ≤ φ(S) ≤ 1. If φ(S) ≈ 0, S may represent a cluster in

G. Conductance is a very well studied measure for graph clustering in the literature (see e.g.

[SM00, KVV04, TM06]). Let us motivate this definition by providing some examples.

Suppose that G is an unweighted graph that represents friendships in a social network. In

particular, each vertex represents an individual and an edge (u, v) shows that u is a friend of v and

vice versa. Then, If φ(S) = ε for S ⊆ V and ε very close to zero, it means that at least 1 − 2ε

fraction of all of friendship relations of individuals of S are with other individuals in S. In other

words, those in S are mostly friend with each other than the rest of the world.

One way to design a graph clustering algorithm is to find sets with smallest conductance in G.

Observe that for any graph G, φ(V ) = 0. To avoid these special cases, the problem is formulated

as finding a sufficiently small set with the least conductance. The conductance of G, φ(G) is the

smallest conductance among all sets that have at most half of the total volume,

φ(G) := min
S:vol(S)≤vol(V )/2

φ(S).

There are several other similar objectives (e.g. edge expansion, sparsest cut, etc.) that one can

use to compare a cut (S, S) with other cuts in G (see below for the some examples). Typically these

parameters are closely related in regular graphs but they are incomparable in non-regular graphs.

In this thesis we mostly focus on conductance. The main reason for that is conductance is closely

related to the eigenvalues of the normalized Laplacian matrix (see e.g. Section 7.8). Because of that

analyzing conductance of sets leads to analysis of random walks or Markov Chains, simple and fast

clustering algorithms, etc.

The edge expansion of a set S is defined as the ratio of the edges leaving S to the number of

vertices in S,

expansion(S) :=
w(S, S)

|S|
.

In a non-regular graph the edge expansion is incomparable with the conductance. But, if G is a

d-regular graph, that is w(v) = d for all v ∈ V , then for any S ⊆ V , φ(S) = expansion(S)/d. The

edge expansion of G is the smallest edge expansion of any subset with at most half of the vertices,

expansion(G) = min
S:|S|≤|V |/2

expansion(S).

Edge expansion is closely related to the sparsest cut problem. Let the sparsity of a cut (S, S) be the
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following:

sparsity(S) :=
w(S, S)

|S| · |V − S|
.

In the uniform sparsest cut problem we want to find a cut with the minimum sparsity,

sparsity(G) := min
∅⊂S⊂V

sparsity(S).

Observe that for any set S ⊆ V such that |S| ≤ |V |/2, we have

expansion(S) ≤ n · sparsity(S) ≤ 2 expansion(S).

Therefore, any approximation algorithm for expansion(G) is also an approximation algorithm for

sparsity(G) (up to a factor of 2), and vice versa. Furthermore, if G is a d-regular graph, then

φ(S) ≤ n

d
· sparsity(S) ≤ 2φ(S).

Therefore, in regular graphs these 3 parameters are closely related, but in non-regular graphs φ(G)

is incomparable to both sparsity(G) and expansion(G).

In the general version of the sparsest cut problem (a.k.a. non-uniform sparsest cut) we are given

a set of demands, dem(u, v) ≥ 0 for any u, v ∈ V and the non-uniform sparsity of a cut (S, S) is

defined as

sparsity(S, dem) :=
w(S, S)∑

u∈S,v/∈S dem(u, v)
.

The goal is to find a cut with the smallest non-uniform sparsity,

sparsity(G,dem) := min
∅⊂S⊂V

sparsity(S,dem).

For example, the uniform sparsest cut problem correspond to letting dem(u, v) = 1 for all u, v ∈ V .

As another example, if dem(u, v) = w(u)w(v) for all u, v ∈ V , then

φ(G) ≤ vol(V ) · sparsity(G,dem) ≤ 2φ(G).

Intuitively, the function dem(., .) specifies which pairs of vertices we would like to see disconnected

in G, and our goal is to find a set of edges to remove such that their number is small compared to

the sum of the pairwise demands of vertices that are disconnected by their removal.
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7.7.1 Continuous Relaxations of Conductance

There are several continuous relaxations for the conductance of a graph G. The first one is the

Rayleigh quotient. Recall that for a function f : V → R,

R(f) =

∑
{u,v}∈E w(u, v)|f(u)− f(v)|2∑

v∈V w(v)f2(v)
.

Observe that if f : V → {0, 1} is not a constant function, then

R(f) = φ(supp(f)).

So, if f is a zero-one function where vol(supp(f)) ≤ vol(V )/2, and f minimizes the Rayleigh

quotient among all such functions, then the support of f is the sparsest cut of G. Therefore,

min
f1,f2∈`2(V,w),f1⊥f2

max{R(f1),R(f2)}

is a lower bound on φ(G) (see Claim 7.8.2 for a rigorous proof).

The importance of this relaxation is that we exactly know the optimizers and we can compute

them efficiently. By (7.2.3), the minimizers of the Rayleigh quotient over all functions f : V → R
are the normalizations of the eigenfunctions of L. Let g1, . . . , gn be the orthonormal eigenfunctions

of L. Then f1 = D1/2g1 the minimizer of the Rayleigh quotient, f2 = D1/2g2 is the minimizer

among all functions that are orthogonal to f2 with in the space `2(V,w), and so on. Therefore,

max{R(f1),R(f2)} is a lower bound on φ(G). As we will show in Section 7.8, the optimum of the

Rayleigh quotient gives a square root approximation of φ(G).

The second continuous relaxation of conductance is the Linear Programming relaxation of Leighton

and Rao [LR99]. We do not use this relaxation explicitly in this thesis but we include it for the sake

of completeness. For the simplicity of notation let us assume G is unweighted and w-regular.

min
n

2w
·
∑

{u,v}∈E

d(u, v)

subject to
∑
u,v

d(u, v) = w · 1,

d(u, v) ≥ d(u, u′) + d(u′, v) ∀u, v, u′ ∈ V

d(u, v) ≥ 0 ∀u, v ∈ V.

If φ(G) = φ(S) for S ⊆ V , then we can let d(u, v) = 1/(|S| · (n − |S|)) if u, v are in different sides

of the cut (S, S) and d(u, v) = 0 otherwise. This shows that the value of the above linear program

lower bounds φ(G).

The above relaxation is not necessarily stronger than the Rayleigh quotient. Leighton and
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Rao [LR99] show that the optimum of above linear program is at least Ω(1/ log(n)) fraction of

φ(G), i.e., the integrality gap of this continuous relaxation is O(log n). Therefore, for graphs where

φ(G)� log(n) the above relaxation is stronger than the Rayleigh quotient.

The third relaxation is the Arora, Rao and Vazirani’s Semidefinite programming relaxation

[ARV09].

min
n

2w

∑
{u,v}∈E

‖xu − xv‖2

subject to
∑
u,v∈V

‖xu − xv‖2 = 1

‖xu − xv‖2 ≤ ‖xu − xu′‖2 + ‖xu′ − xv‖2 ∀u, v, u′ ∈ V

If φ(G) = φ(S) for S ⊆ V , then we can let

xu =


√

1
|S|·(n−|S|) if u ∈ S,

0 otherwise.

This shows that the value of the above semidefinite program lower bounds φ(G).

It is an easy exercise that the above relaxation is always as strong as the Rayleigh quotient.

In fact if we drop the third constraint, the triangle inequality constraint, then the optimum of the

above program (up to a factor 2) is exactly the same as λ2. Arora, Rao and Vazirani [ARV09] show

that the optimum of above program is at least Ω(1/
√

log(n)) of φ(G), i.e., the integrality gap of the

above relaxation is O(
√

log(n)).

7.7.2 Computability of Conductance

The problem of finding the set with the smallest conductance in a given graph is one of the funda-

mental problems in the field of computing. The problem is NP-hard [MS90], and although we still

don’t know if this problem is APX hard, it is conjectured that it is NP-hard to find a constant factor

approximation algorithm for this problem. Chawla, Krauthgamer, Kumar, Rabani and Sivakumar

[CKK+05] show that it is unique games hard to find a constant factor approximation algorithm for

the non-uniform sparsest cut.

There are several approximation algorithm for approximating the (non-uniform) sparsest cut of

a graph. Alon and Milman [AM85] proved a discrete version of Cheeger’s inequality and designed

a spectral algorithm that provides a O(1/
√
φ(G)) approximation to φ(G) (see Section 7.8 for more

details). Leighton and Rao [LR99] designed an O(log n) approximation algorithm to the sparsest cut

problem (see also [LLR95] for different proof techniques). Arora Rao and Vazirani [ARV09] designed

an O(
√

log n) approximation algorithm to the uniform sparsest cut problem. Chawla, Gupta and

Racke [CGR05] and Arora, Lee and Naor [ALN08] designed an O(log3/4 n) and O(
√

log n log log n)
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approximation algorithm to the non-uniform sparsest cut problem.

Within the long-term research program of developing better approximation algorithms for uni-

form sparsest cut in general graphs, there has been much success in the last couple of years toward

developing better algorithms for restricted classes of graphs.

The technique of subspace enumeration [KT07, Kol11, ABS10] applies to the special class of

graphs known as “low threshold rank” graphs. A graph G has a low threshold rank, if λk = Ω(1)

for a small number k. Low threshold rank graphs can be considered as a generalization of expander

graphs.

Arora, Barak and Steurer [ABS10] show that the technique of subspace enumeration devel-

oped in the work of Kolla and Tulsiani [KT07, Kol11], achieves an O(1/λk) approximation in time

2O(k) poly(n). Later, Barak, Raghavendra and Steurer [BRS11] and Guruswami and Sinop [GS11]

match this O(1/λk) approximation factor in time nO(k) by using an SDP relaxation that is derived

from the Arora-Rao-Vazirani relaxation by k “rounds” of a procedure defined by Lasserre. The

procedure starts from a SDP relaxation of a combinatorial problem which can be formulated as a

0/1 integral program, and defines a family of relaxations with additional variables and constraints.

The k-th relaxation in this family has size nO(k). We will refer to the k-th relaxation in this family

as Lassk-ARV.

These techniques are very powerful, and they lead to approximation algorithms for many con-

straint satisfaction problems including maximum cut, sparsest cut, minimum uncut, graph coloring,

etc [AG11, GS12, GS13, OT12]. These algorithms run in time that is exponential in k, and they typ-

ically provide an approximation ratio of 1/ poly(λk). A notable exception is the work of Guruswami

and Sinop [GS13], who show that even if λk � 1, but there is a gap between λk and φ(G), such

as, say, λk > 2φ(G), then a constant-factor approximation can be derived from Lassk-ARV. The

approximation ratio can be made arbitrarily close to one if the ratio λk/φ(G) is sufficiently large.

Because of the exponential dependency on k in the running time of all of the above algorithms,

we may obtain a polynomial time algorithm only for graphs with a fast growing spectrum, i.e., if

k = O(log n).

7.7.3 The Small Set Expansion Problem

Lovasz and Kannan [LK99] defined the conductance profile of a graph G as follows:

φ(k) := min
S:vol(S)≤k

φ(S). (7.7.1)

Lovasz and Kannan used the conductance profile as a parameter to prove strong upper bounds on

the mixing time of random walks. The notion of conductance profile recently received significant

attention in the literature because of its close connection to the small set expansion problem and

the unique games conjecture [RS10].
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Let

φc(k) := min
S:vol(S)≤vol(V )/k

φ(S).

In words, φc(k) = φ(vol(V )/k). The small set expansion problem is defined as follows:

Problem 7.7.1 (GAP Small Set Expansion sse(k, ε) [RS10]). Given a graph G, and constants

k, ε > 0, distinguish whether,

φc(k) ≥ 1− ε or φc(k) ≤ ε.

Raghavendra and Steurer conjectured that the above problem is hard for sufficiently small values

of δ,

Conjecture 7.7.2 (Gap-Small-Set Expansion Conjecture). For every ε > 0, there exists k such that

the problem Gap- Small-Set Expansion (ε, k) is NP-hard.

Raghavendra and Steurer in [RS10] show that Gap-Small-Set-Expansion problem is easier than

the Unique Games conjecture.

Theorem 7.7.3 (Raghavendra,Steurer [RS10]). The Gap-Small-Set Expansion conjecture implies

the Unique Games Conjecture.

The above theorem shows that if someone wants to design an algorithm to refute Unique Games

conjecture she must start by designing an algorithm for the small set expansion problem. Therefore,

in this thesis we mainly pursue algorithms for the small set expansion problem.

Let the threshold rank of G, denoted by rankη(L), be the number (with multiplicities) of eigen-

values λ of L, satisfying λ < η. Arora, Barak and Steurer [ABS10] solved the small set expansion

problem on regular graphs G, assuming that rankη(L) ≥ npoly(η/ε), for some constant η > 0. Un-

fortunately, their algorithm does not provide any approximation of φc(δ) for general graphs, since

they may have much fewer large eigenvalues.

Raghavendra, Steurer, Tetali [RST10], and Bansal et al. [BFK+11] used the semidefinite pro-

gramming relaxation of the problem, and designed algorithms that approximate φc(k) within factors

O(φc(k)−1/2
√

log k), and O(
√

log n log k) of the optimum, respectively. However, in the interesting

regime of k = ω(1), which is of interests to the small set expansion problem, the quality of both

approximation algorithms is not independent of k.

In Chapter 12 we solve small set expansion problem when k = poly(n). Unfortunately, this

would not refute Gap-Small-Set Expansion conjecture because there both k and ε are independent

of the size of the graph.

7.8 Cheeger’s Inequality

In Riemannian geometry, the Cheeger isoperimetric constant of a compact Riemannian manifold is

a positive real number defined in terms of the minimal area of a surface that divides the manifold
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into two disjoint pieces of equal volume. Cheeger [Che70] showed that the first nontrivial eigenvalue

of the Laplace-Beltrami operator on the manifold is related to the isoperimetric constant. In this

thesis we will not give more details about this, instead we discuss an analogue of this result on

graphs. Interested readers are referred to a recent survey by Trevisan [Tre13].

In Section 7.2 we show that for any graph G, λ2 = 0, if and only if G is disconnected. The

discrete version of Cheeger’s inequality provides a robust version of this fact. Roughly speaking,

G is barely connected if and only if λ2 is very close to zero. We use the notion of conductance to

quantify graphs that are barely connected.

Theorem 7.8.1 (Discrete Cheeger’s Inequality [AM85, Alo86, SJ89]). For any graph G,

λ2/2 ≤ φ(G) ≤
√

2λ2.

Furthermore, there is a simple near linear time algorithm (the Spectral Partitioning algorithm) that

given a function f : V → R such that R(f) ≤ c · λ2 for a constant c ≥ 1, finds a set S such that

vol(S) ≤ vol(V )/2 and

φ(S) = O(
√
c · φ(G)).

Cheeger’s inequality is one of the most influential results in spectral graph theory with significant

applications in spectral clustering [ST96, KVV04], explicit construction of expander graphs [JM85,

HLW06, Lee12], approximate counting [SJ89, JSV04], and image segmentation [SM00].

Next we provide several applications of this inequality.

Uniform Sparsest Cut Problem. Cheeger’s inequality provides an O(1/
√
φ(G)) approximation

algorithm to φ(G). This is very important because the approximation factor does not depend on

the size of the graph, it rather depends on the value of the optimum. Consequently, this inequality

provides an efficient algorithm to test if a given graph is an expander. In addition, Cheeger’s

inequality provides a very simple near linear time algorithm for approximating φ(G). As we describe

in the proof of Theorem 7.8.1 given an approximation of the second eigenfunction of L, one can find

a set S of conductance O(
√
λ2) in linear time. Since by Theorem 7.6.2 we can find a function f such

that R(f) ≤ 2λ2 in near linear time we obtain a near linear time approximation algorithm to φ(G).

Graph Separator Problem. Planar Separator theorem states that any planar graph can be

split into smaller pieces by removing a small number of vertices. In particular, by removing O(
√
n)

vertices we can divide a planar graph into two sets each of at most 2n/3 vertices. This theorem

is very essential in several of divide and conquer algorithms on planar graphs. Spielman and Teng

[ST96] show that if G is a planar bounded degree graph, then Spectral partitioning algorithm to

produce a separator of G. This is later extended to bounded genus graphs or minor free graphs

([Kel04, BLR08, KLPT11]).
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Analyzing Mixing time of Random Walks. Jerrum and Sinclair [SJ89] prove that the ε-

uniform mixing time of any lazy random walk (equivalently, reversible Markov Chain) is bounded

from above by,

τ∞(ε) ≤ 2

φ(G)
2

(
log

1

minv π(v)
+ log

1

ε

)
. (7.8.1)

The above inequality simply follows from an application of Cheeger’s inequality to Lemma 7.4.2.

This result is extended to non-reversible chains by Mihail [Mih89].

7.8.1 Proof of the Cheeger’s Inequality

The left side of the Cheeger’s inequality is also known as the easy direction and the right side the

hard direction. We start by proving the easy direction.

Claim 7.8.2. For any graph G, λ2/2 ≤ φ(G).

Proof. For S ⊆ V , let 1S be the indicator of S, that is 1S(v) = 1 if v ∈ S and 1S(v) = 0 otherwise.

Then,

R(1S) =

∑
(u,v)∈E w(u, v)|1S(u)− 1S(v)|2∑

v∈S 1S(v) · w(v)
=

∑
u∈S,v/∈S w(u, v)∑

v∈S w(v)
= φ(S).

Let S = argminvol(S)≤vol(V )/2 φ(S). Then, by Lemma 7.2.1,

λ2 ≤ 2 max{R(1S),R(1S)} = 2 max{φ(S), φ(S)} = 2φ(S) = 2φ(G).

Before proving the right side of the Cheeger’s inequality we show several lemmas that will be

used later in this thesis. For any function f : V → R, and any threshold t ∈ R, we define the

threshold cut Sf (t) as follows

Sf (t) := {v : f(v) ≥ t}.

Many variants of the following lemma are known; see, e.g. [Chu96].

Lemma 7.8.3. For every non-negative f : V → R, the following holds

min
t>0

φ(Sf (t)) ≤
∑

(u,v)∈E w(u, v)|f(v)− f(u)|∑
v w(v)f(v)

.

Proof. First we recall a simple inequality that is very crucial. Let a1, a2, . . . , am, b1, b2 . . . , bm ≥ 0.

Then,

min
1≤i≤m

ai
bi
≤ a1 + . . .+ am
b1 + . . .+ bm

. (7.8.2)

Since the right hand side is homogeneous in f , we may assume that maxv∈V f(v) ≤ 1. Let
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0 < t ≤ 1 be chosen uniformly at random. Then, by linearity of expectation,

E
[
w(Sf (t), Sf (t))

]
E [vol(Sf (t))]

=

∑
(u,v)∈E w(u, v)|f(u)− f(v)|∑

v w(v)f(v)
.

Therefore, by equation (7.8.2) there exists a 0 < t such that φ(Sf (t)) ≤
∑

(u,v)∈E w(u,v)|f(v)−f(u)|∑
v w(v)f(v) .

Lemma 7.8.4. For any non-negative function f : V → R, the following holds

min
t>0

φ(Sf (t)) ≤
√

2R(f).

Proof. Let g(v) := f(v)2 for all v ∈ V . Observe that g(v) < g(u) if and only if f(u) < f(v).

Therefore, by Lemma 7.8.3,

min
t>0

φ(Sf (t)) = min
t>0

φ(Sg(t)) ≤
∑

(u,v)∈E w(u, v)|g(u)− g(v)|∑
v∈V w(v)g(v)

=

∑
(u,v)∈E w(u, v)

∣∣f(u)2 − f(v)2
∣∣∑

v∈V w(v)f(v)2

=

∑
(u,v)∈E w(u, v)‖f(u)− f(v)‖ · ‖f(u) + f(v)‖∑

v∈V w(v)f(v)2

≤

√∑
(u,v)∈E w(u, v)‖f(u)− f(v)‖2 ·

√∑
(u,v)∈E w(u, v)‖f(u) + f(v)‖2∑

v∈V w(v)f(v)2

≤
√
R(f)

√
max

(u,v)∈E

|f(u) + f(v)|2
f(u)2 + f(v)2

≤
√

2R(f) .

where the second inequality follows by the CauchySchwarz inequality.

Now, we are ready to prove the hard direction of Cheeger’s inequality.

Proof of Theorem 7.8.1. Let g : V → R be a non-constant function. By Lemma 7.2.2 and

Lemma 7.2.3 there are two disjointly supported functions f+, f− ∈ `2(V,w) such thatR(f+),R(f−) ≤
c · R(D−1/2g), where c = 1 if g is an eigenfunction of L and c = 4 otherwise.

Wlog assume that vol(supp(f+)) ≤ vol(V )/2. Then, by Lemma 7.8.4,

φ(G) ≤ min
t>0

φ(Sf+(t)) ≤
√

2c · R(f).

Above proof shows that (up to linear normalizations) a simple partitioning algorithm that finds

the best threshold cut defined by a function D−1/2g gives a 1/
√
φ(G) approximation to φ(G). The

details are described in Algorithm 10.
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Algorithm 10 Spectral Partitioning Algorithm

Input: A non-constant function g : V → R.
Output: A set S ⊆ V such that vol(S) ≤ vol(V )/2 and φ(S) ≤ O(

√
R(D−1/2g)).

Let f+ and f− be the functions defined in Lemma 7.2.2. If g is an eigenfunction of L, then we
can simply let f+(v) = g(v)/

√
w(v), f−(v) = 0 if g(v) > 0 and f+(v) = 0, f−(v) = g(v)/

√
w(v)

otherwise.
Wlog assume that vol(supp(f+)) ≤ vol(V )/2,
Sort the vertices in non-decreasing order of values in f+, that is suppose f+(v1) ≤ f+(v2) ≤ . . . ≤
f+(vn).
Choose i such that φ({v1, . . . , vi}) = min1≤j≤n φ({v1, . . . , vj}).

return {v1, . . . , vi}.

Observe that for a given function g the algorithm can be implemented in near linear time, and

by above proof it returns a set of conductance O(
√
R(D−1/2g)). We remark that, usually one

would write the spectral partitioning algorithm by computing the best threshold cut of the function

D−1/2g. By Lemma 7.2.3, if g is a non-constant eigenfunction of L, this algorithm would work since

the support of f+(f−) is simply the vertices with positive (negative) value in D−1/2g, respectively.

However, if g is any arbitrary non-constant function, and G is not a regular graph, we need to choose

a particular normalization of g as described in Lemma 7.2.2.

7.8.2 Tightness of Cheeger’s inequality

In this part we provide several examples to show that the all parts of the analysis in this section are

tight. Nonetheless, we manage to improve this analysis in Chapter 11.

Example 7.8.5 (Hypercube). Let G be a h-dimensional hypercube. By our discussion in Subsec-

tion 7.3.4, λ2 = 2/h. On the other hand, the sparsest cut of a hypercube is a dimensional cut, i.e.,

for S = {a : a(1) = 0}, we have

φ(S) =
|E(S, S)|
h · |S|

=
|S|
h · |S|

= 1/h.

Therefore, the left side of Cheeger’s inequality is exactly tight.

Example 7.8.6 (Cycle). Let G be a cycle of length n. By our discussion in Subsection 7.3.1,

λ2 = cos(2π/n) = 4π2/n2 + O(1/n4). On the other hand, let S be a path of length n/2, we get

φ(S) = 1/|S| = n/2. So, the right side of Cheeger’s inequality is tight up to constant factors. Note

that although the right side of the Cheeger’s inequality is tight, spectral partitioning algorithm finds

a cut of conductance O(φ(G)), so our analysis is not tight for the cycle graph.

Example 7.8.7 (Ladder). Our last example is the ladder graph described in Subsection 7.3.3. Sup-

pose that l > 106, and G is a ladder graph made by connecting two cycles of length l with a perfect
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Figure 7.8.1: An illustration of the Ladder graph. Here each solid edge has weight 1 and each dashed
edge has weight 100/l2 where l is the length of the cycles. The middle figure shows the set with the
optimum conductance for a sufficiently large l, and the right figure shows the output of the spectral
partitioning algorithm.

matching of size l (see Figure 7.8.1). Since the edges of the matching have weight 100/l2, the set

with the smallest conductance is S = {(r, 0) : 0 ≤ 0 ≤ n− 1} the set of vertices in one of the cycles,

φ(S) =
100|S|/l2

(2 + 100/l2)|S|
= O(1/l2).

Note that for any other set S such that vol(S) ≤ vol(V )/2, φ(S) = Ω(1/l).

We show that the spectral partitioning algorithm indeed divides the cycles and its output has

conductance Ω(1/l). By our discussion in Subsection 7.3.3 λ2 = O(1/l2) and the corresponding

eigenfunction is χ1,0 where for each pair of vertices (r, 0) and (r, 1) that are matched χ1,0(r, 0) =

χ1,0(r, 0). This shows that the second eigenfunction doesn’t discriminate between the vertices of the

two cycles. Thus, the spectral partitioning algorithm divides the cycles and its output has conductance

Ω(1/l). Since λ2 = O(1/l2, this implies that our analysis of the spectral partitioning algorithm is

tight up to a constant factor.

7.9 Random Partitioning of Metric Spaces

A distance function is a function d : V × V → R+. such that for all u, v ∈ V , d(u, v) = d(v, u) and

for all v ∈ V , d(v, v) = 0. For a set S ⊆ V , the diameter of S with respect to a distance function

d(., .) is the maximum distance between the vertices of S,

diam(S, d) := max
u,v∈S

d(u, v).
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The distance of a vertex u to a set S is the distance to the closest vertex in S,

d(u, S) := min
v∈S

d(u, v).

Also, for S, T ⊆ V , d(S, T ) := minv∈T d(v, S). For S ∈ V and r ≥ 0 we write

Bd(S, r) := {v ∈ V : d(u, v) ≤ r}

to denote the closed ball of radius r about S (if the distance function is clear in the context we

may drop the subscript). We also abuse the notation and use Bd(v, r) if S = {v}. For any mapping

F : V → Rk we use BF (S, r) to denote the ball of radius r about S with respect to the Euclidean

distance function d(u, v) = ‖F (u)− F (v)‖.
We say d(., .) defines a metric if for any three vertices u, v, v′ ∈ V ,

d(u, v) ≤ d(u, v′) + d(v, v′).

Also, we say d is a pseudo metric if the distance between two distinct vertices can be zero. Sometimes,

it will be useful to consider the largest metric on the graph G which agrees with a given metric d(., .)

on edges. This is the induced shortest-path (extended pesudo-) metric on G, where the length of an

edge (u, v) ∈ E is given by d(u, v). We will use the notation d̂ for this metric. Observe that d̂ ≥ d

whenever d(., .) is a (pseudo-) metric.

In many parts of this thesis we would like to partition V into sets of small diameter such that the

endpoints of most of the edges map to the same set. Consequently, one can argue that most of the

sets in such a partitioning has a small conductance since they cover a large fraction of vertices while

cutting only a few edges. So, in this subsection we focus on the literature of random partitioning on

metric spaces. These provide a useful tool in analyzing high dimensional embedding of G.

We write a partition P of V as a function P : V → 2V mapping a vertex v ∈ V to the unique

set in P that contains v. For ∆ > 0, we say that P is ∆-bounded if diam(S, d) ≤ ∆ for every S ∈ P .

We will also consider distributions over random partitions. If P is a random partition of V , we say

that P is ∆-bounded if this property holds with probability one.

A random partition P is (∆, α, δ)-padded if P is ∆-bounded, and for every v ∈ V , we have

P [B(v,∆/α) = P(v)] ≥ δ.

A random partition is (∆, L)-Lipschitz if P is ∆-bounded, and, for every pair u, v ∈ V , we have

P [P(u) 6= P(v)] ≤ L · d(u, v)

∆
.

Before reviewing the literature on partitioning of metric spaces we give a simple example by
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partitioning a mapping of vertices of G into Rk. Suppose that we are given a function F : V → Rk

and we let d(u, v) = ‖F (u)− F (v)‖ for all u, v ∈ V . The goal is to partition the vertices into sets of

diameter ∆ such that most of the endpoints of edges of G map to the same set. Let P be a partition

of Rk into axis-parallel cubes of side length ∆/
√
k. Every set S of P is the vertices inside one such

cube. Observe that the diameter of any set in P is at most ∆ (this is because the diameter of a

k dimensional cube is
√
k times its side length). We choose a ∆-bounded random partition P by

choosing a uniformly random axis-parallel translation of P . It turns out that for any edge (u, v) ∈ E,

P [P(u) 6= P(v)] ≤
√
k · ‖F (u)− F (v)‖

∆/
√
k

.

Thus, P is (∆, O(k))-Lipschitz. Note the polynomial dependency to the size of the dimension. In

other words, this shows that partitioning is much easier in lower dimensional space in the sense that

larger fraction of adjacent vertices map to the same region.

It turns out that the above construction is not optimal because the diameter of a cube is
√
k

times larger than its side length. It is more efficient to use a partitioning of Rk into balls as opposed

to cubes. But, unfortunately, there is no covering of Rk with disjoint balls of equal radii. So the

above construction doesn’t naturally extend to a partitioning by balls. Nonetheless, this extension

is studied in [CCG+98] through a more sophisticated construction (see also [LN05, Lem 3.16]).

Theorem 7.9.1. If vertices are mapped to Rk, and d(., .) is the Euclidean distance between the

vertices, then for every ∆ > 0, (V, d) admits a (∆, O(
√
k))-Lipschitz random partition.

The next theorem is proved in [GKL03] and provides a padded partitioning of Euclidean metrics

(see also [LN05, Lem 3.11]).

Theorem 7.9.2. If vertices are mapped to Rk, and d(., .) is the Euclidean distance between the

vertices, then for every ∆ > 0 and δ > 0, (V, d) admits a (∆, O(k/δ), 1−δ)-padded random partition.

If d(., .) is any general metric space, then Lipschitz parameter must depend on the number of

vertices of G. The following theorem can be derived from work of Leighton and Rao [LR99], or

Linial and Saks [LS93]. The form stated below comes from work of Bartal [Bar98].

Theorem 7.9.3. For any distance function d(., .), (V, d) admits a (∆, O(log n))-Lipschitz random

partition.

Finally, we include d(., .) is a shortest path metric of a (weighted) low-dimensional graph then we

can avoid any dependency to the number of vertices of G. A partitioning theorem for excluded-minor

graphs is presented in [KPR93], with an improved quantitative dependence coming from [FT03].

Theorem 7.9.4. If d(., .) is the shortest-path metric on a graph excluding Kc as a minor, then

for every ∆ > 0 and δ > 0, (V, d) admits a (∆, O(c2/δ), 1 − δ)-padded random partition and a

(∆, O(c2))-Lipschitz random partition.
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For example, any shortest path metric of defined on a planar graph admits a (∆, O(1))-Lipschitz

random partition. For the special case of bounded-genus graphs, a better bound is known [LS10].

Theorem 7.9.5. If d(., .) is the shortest-path metric on a graph of genus g, then for every ∆ > 0 and

δ > 0, (V, d) admits a (∆, O((log g)/δ), 1−δ)-padded random partition, and a (∆, O(log g))-Lipschitz

random partition.
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Chapter 8

New Machineries

The goal of this chapter is to describe several of the new machineries that are developed in our

works. Many of these machineries have been used in several contexts including probability theory,

spectral graph theory, and algorithm design. In this chapter we define these tools in an abstract

sense and we try to motivate them by giving some examples.

8.1 Spectral Embedding

Spectral embedding of graphs uses the bottom k eigenfunctions of the normalized Laplacian matrix

to embed the graph into Rk. The primary use of this embedding has been in practical spectral

clustering algorithms [SM00, NJW02] (see 1.2.1 for more details). In this section we formally define

this embedding and prove several of its important properties. As we discuss in following chapters

this embedding plays an important roles in many of our results on analyzing higher order eigenvalues

of graphs.

Spectral embedding for finite graphs is easy to describe. Let g1, . . . , gk be orthonormal eigen-

functions of L corresponding to λ1, . . . , λk, and let fi = D−1/2gi for 1 ≤ i ≤ k. Then the spectral

embedding is the function F : V → Rk defined by

F (v) :=
(
f1(v), f2(v), . . . , fk(v)

)
. (8.1.1)

In Figure 8.1.1 we plotted the spectral embedding of a cycle based on its first 3 eigenfunctions. Note

that although the spectral embedding doesn’t know the labeling of the vertices of the cycle, it can

re-construct it in a 3 dimensional space such that no two edges cross each other.

This embedding satisfies interesting properties.

187
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f2

f3

f1

Figure 8.1.1: The Spectral Embedding of a cycle with respect to the first 3 eigenfunctions of the
normalized Laplacian matrix.

Average Norm. For S ⊆ V , and a mapping F : V → Rk we define the `2 mass of S as follows,

MF (S) :=
∑
v∈S

w(v) ‖F (v)‖2 .

If F is the spectral embedding, then

MF (V ) =
∑
v∈V

w(v) ‖F (v)‖2 =
∑
v∈V

k∑
i=1

w(v)fi(v)2 =

k∑
i=1

‖fi‖2w = k. (8.1.2)

Therefore, the average norm of the vertices in the spectral embedding is
√
k/n · w(v).

Lemma 8.1.1. For any set S ⊆ V , and a mapping F : V → Rk, there is a vertex v ∈ S, such that

‖F (v)‖ ≥
√
MF (S)
n·w(v) .

Proof. If there is no v satisfying the lemma, then

MF (S) =
∑
v∈S
‖F (v)‖2 w(v) <

∑
v∈S
MF (S)/n ≤MF (S).

So we reach a contradiction.

Isotropy. For a map F : V → Rk, we say F is isotropic if for any unit vector x ∈ Rk,

∑
v∈V

w(v)〈x, F (v)〉2 = 1 . (8.1.3)

In the next lemma we show that the spectral embedding is isotropic. This property shows that

the mass after projection on a unit vector is 1. Consequently, since by equation (8.1.2) the sum of

the norm of all vertices in the spectral embedding is exactly k, each direction in the space contributes
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exactly the same amount to the overall `2 mass. In other words, it is impossible for the `2 mass of

F to “concentrate” along fewer than k directions.

Lemma 8.1.2 (Isotropy). The spectral embedding F : V → Rk is isotropic.

Proof. The proof simply follows from the fact that the functions f1, . . . , fk are orthonormal in the

space `2(V,w). Let x ∈ Rk be a unit vector. Then,

∑
v∈V

w(v)〈x, F (v)〉2 =
∑
v∈V

w(v)
( k∑
i=1

x(i)fi(v)
)2

=
∑

1≤i,j≤k

x(i)x(j)
∑
v∈V

w(v)fi(v)fj(v)

=
∑

1≤i,j≤v

x(i)x(j)〈fi, fj〉w = ‖x‖2 = 1.

Spreading. One of the important consequences of the isotropy property is the spreading property.

Roughly speaking, spreading property implies that as k →∞, the vertices spread all over the space.

More formally, in every small ball we have at most 1/k fraction of the total mass of the vertices.

Let us define the radial projection distance function. Redial projection distance is an extended

pseudo-metric on V : If ‖F (u)‖, ‖F (v)‖ > 0, then

dF (u, v) :=

∥∥∥∥ F (u)

‖F (u)‖
− F (v)

‖F (v)‖

∥∥∥∥ .
Otherwise, if F (u) = F (v) = 0, we put dF (u, v) := 0, else dF (u, v) := 1. Observe that a set with

small diameter with respect to dF corresponds to a cone in Rk; see Figure 8.1.2. We do not motivate

this distance function here but it is one of the key elements of the proofs in Chapter 10.

Lemma 8.1.3. For any isotropic map F : V → Rk, and any set S ⊆ V ,

MF (S) ≤ 1

k(1− diam(S, dF )2)
MF (V ).

Proof. For any vertex v ∈ V , let Γ(v) := F (v)/ ‖F (v)‖ , and Γ(v) = 0 if F (v) = 0. Fix any u ∈ S
such that F (u) 6= 0 (note that if such a vertex does not exist then MF (S) = 0 and we are done).

By Lemma 8.1.2,

1 =
∑
v∈V

w(v) 〈F (v),Γ(u)〉2 =
∑
v∈V

w(v) ‖F (v)‖2 〈Γ(v),Γ(u)〉2

=
∑
v∈V

w(v) ‖F (v)‖2 (‖Γ(v)‖2 + ‖Γ(u)‖2 − ‖Γ(v)− Γ(u)‖2)2/4

=
∑
v∈V

w(v)‖F (v)‖2
(

1− dF (u, v)2

2

)2

≥ (1− diam(S, dF )2)MF (S) .
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f2

f3

Figure 8.1.2: Each cone represents a subset of vertices with small radial projection distance.

where we used the identity ‖Γ(u)− Γ(v)‖ = dF (u, v). The lemma now follows by equation (8.1.2).

We say an embedding, F : V → Rk, is (∆, η)-spreading (with respect to G) if, for all subsets

S ⊆ V , we have

diam(S, dF ) ≤ ∆ =⇒ MF (S) ≤ η · MF (V ) .

In the next corollary we show that for any small constant ∆ any isotropic embedding is (∆, O(1/k))

spreading. It is worth noting that for this lemma we do not need to assume that F is a spectral

embedding of G.

Corollary 8.1.4. For any ∆ > 0, any isotropic map F : V → Rk is (∆, 1
k(1−∆2) )-spreading.

The following corollary is a simple consequence of Lemma 8.1.3. It shows that any ball of radius

α ‖F (u)‖, with respect to the Euclidean distance, around vertex a u, has at most O(1/k)-fraction

of the total mass, for any constant α < 1/2.

Corollary 8.1.5. For any isotropic map F : V → Rk, and any vertex u ∈ V , and r = α ‖F (u)‖,
for α > 0,

MF (BF (u, r)) ≤ 1

(1− 2α2)2
.

First, we prove the following lemma, which upper bounds the radial projection distance by the

Euclidean distance.

Lemma 8.1.6. For any F : V → Rk, and for all u, v ∈ V , we have dF (u, v) ‖F (u)‖ ≤ 2 ‖F (u)− F (v)‖.

Proof. For any non-zero functions x,y ∈ Rk, we have

‖x‖
∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ =

∥∥∥∥x− ‖x‖‖y‖y
∥∥∥∥ ≤ ‖x− y‖+

∥∥∥∥y − ‖x‖‖y‖y
∥∥∥∥ ≤ 2 ‖x− y‖ .
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Now, if F (u) 6= 0 and F (v) 6= 0 we use above inequality. If F (u) = 0

dF (u, v) ‖F (u)‖ = 0 ≤ ‖F (u)− F (v)‖

And, if F (v) = 0 and F (u) 6= 0, then

dF (u, v) ‖F (u)‖ = ‖F (u)‖ ≤ ‖F (u)− F (v)‖ .

Proof of Corollary 8.1.5. Without loss of generality, assume that F (u) 6= 0. For any vertex

v ∈ BF (u, r),

dF (u, v) ≤ 2 ‖F (u)− F (v)‖
‖F (u)‖

=
2α ‖F (u)‖
‖F (u)‖

= 2α

Thus by proof of Lemma 8.1.3, MF (B(u, r)) ≤ 1/(1− 2α2)2.

Energy. The energy of a map F : V → Rk is defined as follows

EF :=
∑

(u,v)∈E

w(u, v) ‖F (u)− F (v)‖2 .

It turns out that if F is the spectral embedding, then we can naturally relate EF to the eigenvalues

of L.

Lemma 8.1.7. The spectral embedding F : V → Rk satisfies the following,

EF =

k∑
i=1

λi, R(F ) =

∑k
i=1 λi
k

≤ λk.

Proof. By equation (7.2.2),

EF =
∑

(u,v)∈E

k∑
i=1

w(u, v)|fi(u)− fi(v)|2 =

k∑
i=1

∑
(u, v) ∈ E|fi(u)− fi(v)|2 =

k∑
i=1

R(fi) =

k∑
i=1

λi.

where we used the assumption that ‖fi‖w = 1 for all 1 ≤ i ≤ k. Consequently,

R(F ) =
E(F )∑k
i=1 ‖fi‖

2
w

=

∑k
i=1 λi
k

≤ λk.

The next corollary shows that not only spectral embedding has a small energy when λk → 0,

any projection of it have a small energy as well.
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Corollary 8.1.8. Let F : V → Rk be the spectral embedding. Then, for any unit vector x ∈ Rk, the

function f ∈ `2(V,w) defined as f(v) := 〈x, F (v)〉 satisfies

R(f) ≤ λk, and Ef ≤ λk.

Proof. First observe that f =
∑k
i=1 x(i)fi. Therefore, f ∈ span{f1, . . . , fk}. By equation (7.2.3).

R(f) ≤ λk. On the other hand, since ‖x‖ = 1, by Lemma 8.1.2, ‖f‖w = 1. Hence, Ef = R(f) ≤
λk.

A general theme in many of the proofs in this thesis is that we use geometric arguments to relate

graph properties to energy of the spectral embedding, or vice versa. Then, we use Lemma 8.1.7 to

relate EF to the eigenvalues of L. For example, if one can use graph properties to lower bound EF ,

this automatically gives lower bound on the eigenvalues of L.

In addition to above observations, by variational principle we can show that the spectral embed-

ding is an embedding that minimizes the energy among all isotropic embeddings. (Note that the

embedding that only minimizes the energy is the one that maps every vertex to the same point in

Rk.)

Lemma 8.1.9. For any isotropic map F : V → Rk,

EF ≥ λ1 + λ2 + . . .+ λk.

Proof. Let g1, . . . , gk ∈ `2(V,w) where gi(v) := 〈F (v),1i〉. We first show that g1, . . . , gk form an

orthonormal basis and then we use equation (7.2.3) to prove the lemma. First, for any 1 ≤ i ≤ j,

by isotropy lemma we have,

1 =
∑
v∈V

w(v)〈1i, F (v)〉2 =
∑
v∈V

w(v)gi(v)2 = ‖gi‖2w . (8.1.4)

On the other hand, for any i 6= j, and x = 1i/
√

2 = 1j/
√

2.

1 =
∑
v∈V

w(v)〈x, F (v)〉2 =
∑
v∈V

w(v)(gi(v) + gj(v))2/2 = ‖gi‖2w /2 + ‖gj‖2w /2 + 〈gi, gj〉w/2

= 1 + 〈gi, gj〉w/2.

where the last equality follows by equation (8.1.4). Therefore, 〈gi, gj〉 = 0. So, g1, . . . , gk are

orthonormal in `2(V,w). Finally, by variational principle,

EF =

k∑
i=1

R(gi) ≥
k∑
i=1

λi.
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In the next lemma we develop a simple path argument to lower bound the energy of a mapping

F .

Lemma 8.1.10. Suppose that w(u, v) ≥ 1 for all edges (u, v) ∈ E. For any map F : V → Rk and

any path P ⊆ V in G between vertices u∗, v∗ ∈ V ,

EF (P) ≥ ‖F (u∗)− F (v∗)‖2

|P|
.

Proof. Let P = (v0, v1, v2, . . . , vl−1, vl), where v0 = u∗ and vl = v∗. Then by the Cauchy-Schwarz

inequality, we have

EF (P) ≥
l−1∑
i=0

‖F (vi)− F (vi+1)‖2 ≥ 1

l

(
l−1∑
i=0

‖F (vi)− F (vi+1)‖

)2

≥ 1

l
‖F (u∗)− F (v∗)‖2 ,

where the first inequality uses the assumption that w(u, v) ≥ 1 for all edges (u, v) ∈ E, the third

inequality follows by the triangle inequality in Hilbert space.

8.2 Beyond log(n) dimensions, Johnson-Lindenstrauss to log(k)

dimensional space.

Suppose we have a mapping F : V → Rk, for some k ∈ N. Johnson and Lindenstrauss celebrated

result [JL84] show that for any ε > 0 one can define another mapping Γ : V → Rl, for l =

O(log(n) polylog(1/ε)), such that for all u, v ∈ V ,

(1− ε) ‖F (u)− F (v)‖2 ≤ ‖Γ(u)− Γ(v)‖2 ≤ (1 + ε) ‖F (u)− F (v)‖2 .

In other words we can approximately preserve all pairwise distances of vertices of G only in a log(n)

dimensional space. The function Γ can be computed easily by computing l randomly chosen k

dimensional Gaussian vectors ζ1, . . . , ζl and letting

Γ(v) = Γk,l ◦ F (v) = (〈ζ1, F (v)〉, . . . , 〈ζl, F (v)〉).

This fundamental theorem has many applications in various fields including machine learning,

compressed sensing, etc. It is worth noting that if we want to preserve all pairwise distances then

we need at least Ω(log n) dimensions.

It is known that if we have l different (global) functions of vertex pairwise distances then we can

map the vertices to a Θ(log(l)) dimensional space making sure that the value of all of the functions

are preserved (up to constant factors). For example, if we just want to preserve the Rayleigh quotient

of F we can map the vertices to a constant dimensional space. Now, suppose F satisfies a global
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property, in particular suppose F is (∆, η)-spreading. What is the smallest number of dimensions

necessary to preserve this property (up to constant factors)?

Our goal in this section is to answer this question. We show that we may bypass the log(n) barrier

and only O(log(1/η)) dimensions suffice. Note that there is no dependency to k or n. Furthermore,

we show that indeed the mapping Γk,l◦F is (Ω(∆), O(η))-spreading for l = O(log(1/η), i.e., the same

idea of dimension reduction works, but in this case for a significantly smaller number of dimensions.

This observation plays an important role in finding the right dependency to k in higher order

Cheeger’s inequalities (equation (10.1.4)). We generally believe this new ideas of dimension reduction

is one of the fundamental achievements of this thesis and we expect to see several applications or

variants of it in the future.

Theorem 8.2.1. Let G = (V,E,w) be a weighted graph, and F : V → Rk be (∆, η)-spreading for

0 ≤ ∆ ≤ 1 and η < 1. Then for some value

l .
1 + log( 1

η ) + log (41∆)

∆2
,

the mapping Γk,l as defined in equation (7.5.2) with probability at least 1/2 satisfies both of the

following conditions:

i) RG(Γk,l ◦ F ) ≤ 8 · RG(F ), and

ii) Γk,l ◦ F is (∆/4, (1 + ∆)η)-spreading with respect to G.

Proof. Although our proof is delicate the basic idea is this: If F is (∆, η) spreading but Γk,l ◦ F
fails to satisfy a this property (up to constant errors), then a � η fraction of the `2 mass has to

have moved significantly in the dimension reduction step, and such an event is unlikely for a random

mapping into O(log(1/η)) dimensions.

Let δ = ∆/16. Choose l � (1+log( 1
η )+log( 1

∆ ))/∆2 large enough such that 2e−δ
2l/14 ≤ δ2η3/128.

Let Γ = Γk,l.

First, observe that equation (7.5.3) combined with Markov’s inequality implies that the following

holds with probability at least 3/4,

EΓ(F ) ≤ 4EF . (8.2.1)

Now define,

U := {v ∈ V : ‖Γ(F (v))‖2 ∈ [(1− δ)‖F (v)‖2, (1 + δ)‖F (v)‖2],

By equation (7.5.4), for each v ∈ V ,

P [v /∈ U ] ≤ δη3/128 . (8.2.2)
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Next, we bound the amount of `2 mass that falls outside of U . By Markov’s inequality, with

probability at least 31/32, we have

MF (V − U) ≤ δη3

4
MF (V ). (8.2.3)

In particular, with probability at least 31/32, we have

MΓ(F )(V ) ≥ (1− δ)MF (U) ≥ (1− 2δ)MF (V ). (8.2.4)

Combining our estimates for (8.2.1) and (8.2.4), we conclude that (i) holds with probability at least

23/32. Thus we can finish by showing that (ii) holds with probability at least 25/32. We first

consider property (ii) for subsets of U .

Claim 8.2.2. With probability at least 7/8, the following holds: equation (8.2.4) implies that, for

any subset S ⊆ U with diam(S, dΓ(F )) ≤ ∆/4, we have

MΓ(F )(S) ≤ (1 + 6δ)η · MΓ(F )(V ) .

Proof. For every u, v ∈ V , define the event,

Au,v =
{
dΓ(F )(u, v) ∈ [dF (u, v)(1− δ)− 2δ, dF (u, v)(1 + δ) + 2δ]

}
and let Iu,v be the random variable indicating that Au,v does not occur.

We claim that for u, v ∈ V , Au,v occurs if u, v ∈ U , and∥∥∥∥Γ

(
F (u)

‖F (u)‖
− F (v)

‖F (v)‖

)∥∥∥∥ ∈ [(1− δ)dF (u, v), (1 + δ)dF (u, v)] .

To see this, observe that,

dΓ(F )(u, v) =

∥∥∥∥ Γ(F (u))

‖Γ(F (u))‖
− Γ(F (v))

‖Γ(F (v))‖

∥∥∥∥
≥

∥∥∥∥Γ(F (u))

‖F (u)‖
− Γ(F (v))

‖F (v)‖

∥∥∥∥− ∥∥∥∥ Γ(F (u))

‖Γ(F (u))‖
− Γ(F (u))

‖F (u)‖

∥∥∥∥− ∥∥∥∥ Γ(F (v))

‖Γ(F (v))‖
− Γ(F (v))

‖F (v)‖

∥∥∥∥
≥

∥∥∥∥Γ

(
F (u)

‖F (u)‖
− F (v)

‖F (v)‖

)∥∥∥∥− 2δ

≥ (1− δ)dF (u, v)− 2δ,

where we have used the fact that Γ is a linear operator. The other direction can be proved similarly.
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Therefore, by (7.5.4), (8.2.2), and a union bound, for any u, v ∈ V , P [Iu,v] ≤ 3δη3/128. Let,

X :=
∑
u,v∈V

w(u)w(v)‖F (u)‖2‖F (v)‖2Iu,v .

By linearity of expectation,

E [X] ≤ 3δη2

128
MF (V )2.

Therefore, by Markov’s inequality, we conclude that

P
[
X ≥ δ · η3

4
MF (V )2

]
≤ 1

8
. (8.2.5)

Now suppose there exists a subset S ⊆ U with diam(S, dΓ(F )) ≤ ∆/4 and

MΓ(F )(S) ≥ (1 + 6δ)ηMΓ(F )(V ) . (8.2.6)

Fix a vertex u ∈ S. Since for every v ∈ S−BdF (u,∆/2), we have dF (u, v) ≥ ∆/2, dΓ(F )(u, v) ≤ ∆/4,

and recalling that δ = ∆/16, it must be that Iu,v = 1. On the other hand, we have

MF (S −BdF (u,∆/2)) ≥ MF (S)−MF (BdF (u,∆/2)

≥ (1− δ)MΓ(F )(S)− ηMF (V )

(8.2.6)

≥ (1− δ)(1 + 6δ)ηMΓ(F )(V )− ηMF (V )

(8.2.4)

≥ [(1− 2δ)(1− δ)(1 + 6δ)− 1]ηMF (V ) ≥ δη · MF (V ) .

where we have used the fact that S ⊆ U and also diam(BdF (u,∆/2)) ≤ ∆ and the fact that F is

(∆, η)-spreading. In last equation, we have used δ ≤ ∆/16 ≤ 1/16.

Thus under our assumption on the existence of S and again using S ⊆ U , we have

X ≥ MF (S) · MF (S −BdF (u,∆/2))

≥ MF (S) · δη · MF (V )

≥ (1− δ)MΓ(F )(S) · δη · MF (V )

(8.2.6)

≥ (1 + 6δ)η(1− δ)MΓ(F )(V ) · δη · MF (V )

(8.2.4)

≥ δ(1− δ)(1− 2δ)(1 + 6δ)η2 · MF (V )2 ≥ δη2 · MF (V )2 .

where the last inequality follows from δ ≤ 1/16. Combining this with (8.2.5) yields the claim.

The preceding claim guarantees a spreading property for subsets S ⊆ U . Finally, we need to

handle points outside U .
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Claim 8.2.3. With probability at least 15/16, we have

MΓ(F )(V − U) ≤ δη3 · MF (V ).

Proof. Let Du be the event that u /∈ U , and let Hu := ‖Γ(F (u))‖2 · I [Du]. Then,

E

[∑
u/∈U

w(u)‖Γ(F (u))‖2
]

=
∑
u∈V

w(u)E [Hu] . (8.2.7)

Now we can estimate,

E [Hu]

‖F (u)‖2
≤ 2P [Du] + P

[
‖Γ(F (u))‖2

‖F (u)‖2
> 2

]
· E
[
‖Γ(F (u))‖2

‖F (u)‖2
∣∣∣ ‖Γ(F (u))‖2 > 2 ‖F (u)‖2

]
. (8.2.8)

Using the inequality, valid for all non-negative X,

P [X > r0] · E [X | X > r0] ≤
∫ ∞
r0

r · P [X > r] dr ,

we can bound the latter term in (8.2.8) by,∫ ∞
2

r · P
[
‖Γ(F (u))‖2 dr > r‖F (u)‖2

]
dr ≤

∫ ∞
2

r · e−rl/14 dr =

(
28

l
+

196

l2

)
e−l/7 ≤ δη3

128
,

where we have used (7.5.5) and the initial choice of l sufficiently large.

It follows from this, (8.2.8), and (8.2.2), that

E [Hu] ≤ 3δη3

128
‖F (u)‖2 .

Therefore, by equation (8.2.7) and Markov’s inequality,

P
[
MΓ(F )(V − U) > δη3 · MF (V )

]
≤ 3

128
,

completing the proof.

To conclude the proof of the lemma, we need to verify that (ii) holds with probability at least

25/32. But observe that if (8.2.4) holds, then the conclusion of the preceding claim is,

MΓ(F )(V − U) ≤ δη3 · MF (V ) ≤ 2δη3 · MΓ(F )(V ).

Combining this with Claim 8.2.2 shows that with probability at least 25/32, Γ◦F is (∆/4, (1+8δ)η)-

spreading, completing the proof.
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8.3 Improved Lower Bounds on Escape Probability

In this section we prove a new technical result on the escape probability of simple random walks.

We show that for any S ⊆ V a t-step lazy random walk started at a random (chosen proportional

to degree) vertex of S remains entirely in S with probability at least (1−φ(S)/2)t. Previously, only

the lower bound 1− tφ(S)/2 was known (see e.g. [ST13]).

For comparison, when t = 1/φ(S), the known bound would imply that the walk has probability at

least 1/2 of being entirely contained in S, with no guarantee being available in the case t = 2/φ(S),

while our bound implies that for t = (ε log n)/φ the probability of being entirely contained in S is

still at least 1/nε. As we discuss in Chapter 12 this technical result is our main idea in designing an

improved local graph clustering algorithm. As a simple application we in Subsection 8.3.1 use our

bound to prove stronger lower bounds on the mixing time of reversible Markov Chains.

Let Xt be the random variable indicating the tth step of the lazy simple random walk on G

started from v ∈ V . For S ⊆ V , let πS(.) be the following distribution,

πS(v) :=

w(v)/vol(S) if v ∈ S,

0 otherwise.

For v ∈ V , and integer t > 0, we write

esc(v, t, S) := PX0=v

[
∪ti=0Xi /∈ S

]
to denote the probability that the random walk started at v leaves S in the first t steps, and

rem(v, t, S) := 1− esc(v, t, S) as the probability that the walk stays entirely inside S.

Proposition 8.3.1. For any set S ⊆ V , and integer t > 0,

Ev∼πS [rem(v, t, S)] ≥
(

1− φ(S)

2

)
Ev∼πS [rem(v, t− 1, S)] ≥ . . . ≥

(
1− φ(S)

2

)t
. (8.3.1)

Furthermore, there is a subset S′ ⊆ S, such that vol(S′) ≥ vol(S)/2, and for all v ∈ S′

rem(v, t, S) ≥ 1

200

(
1− 3φ(S)

2

)t
. (8.3.2)

We remark that the second statement does not follow from a simple application of the Markov

inequality to the first statement, as this is the case in [ST13]. Whence, here both of the results

incorporate non-trivial spectral arguments. Alternate proofs of above proposition are recently shown

by O’Donnell and Witmer [OW12].

Proof. Recall that P is the transition probability operator of the lazy random walk (see Section 7.4).
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Let IS be the identity operator on S, i.e., for any f : V → R, ISf(v) = f(v) if v ∈ S and ISf(v) = 0

otherwise. First, observe that

rem(v, t, S) = 〈(ISPT IS)t1v,1S〉 = 〈1v, (ISPIS)t1S〉.

So,

Ev∼πS [rem(v, t, S)] = 〈πS , (ISPIS)t1S〉 (8.3.3)

Therefore, by a simple induction on t, (8.3.1) is equivalent to the following equation,

〈πS , (ISPIS)t1S〉 ≥ (1− φ(S)/2)〈πS , (ISPIS)t−11S〉. (8.3.4)

Let Q := D1/2ISPISD
−1/2, and let

√
πS : V → R, where

√
πS(v) =

√
πS(v). First we show that

(8.3.4) is equivalent to the following equation:

〈
√
πS , Q

t√πS〉 ≥ 〈
√
πS , Q

√
πS〉 · 〈

√
πS , Q

t−1√πS〉. (8.3.5)

Then, we use Lemma 8.3.2 to prove the above equation. First observe that by the definition of Q,

for any t > 0,

〈πS , (ISPIS)t1S〉 = 〈πS , D−1/2QtD1/21S〉 = 〈D−1/2πS , Q
tD1/21S〉 = 〈

√
πS , Q

t√πS〉 (8.3.6)

On the other hand,

〈πS , (ISPIS)1S〉 =
〈
πS ,

1

2
(D−1A+ I)1S

〉
=

1

2
〈πS , D−1A1S〉+

1

2
〈πS ,1S〉

=
1

2vol(S)
〈1S , A1S〉+

1

2

=
1

2vol(S)
w(S) +

1

2

=
1

2vol(S)
(vol(S)− w(S, S)) +

1

2

= 1− φ(S)/2. (8.3.7)

where we used w(S) =
∑
u,v∈S w(u, v). Equation (8.3.5) is equivalent to equation (8.3.4) using

(8.3.6), (8.3.7). Next we prove equation (8.3.5) using Lemma 8.3.2. First observe that
√
πS is a

norm one vector. On the other hand, by definition

Q = D1/2ISPISD
−1/2 =

1

2
D1/2IS(D−1A+I)ISD

−1/2 =
1

2
IS(D−1/2AD−1/2+I)IS = IS(I−L/2)IS
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is a symmetric matrix. On the other hand, for any f : V → R,

〈Qf, f〉
〈f, f〉

=
〈(I − L/2)fS , fS〉

〈fS , fS〉
≥ 0

where fS is the restriction of f to S, and in the last equation we used the fact that the largest

eigenvalue of L is at most 2. Thus, by Corollary 7.1.6 Q is positive semidefinite. This completes the

proof of (8.3.1).

It remains to prove (8.3.2). We prove it by showing that for any set T1 ⊆ S, of volume vol(T1) ≥
vol(S)/2, the random walk started at a randomly (proportional to degree) chosen vertex of T1,

remains in T1 (and S), with probability at least 1
200 (1− 3φ(S)/2)t,

Ev∼πT1 [rem(v, t, T1)] = 〈πT1 , (ISPIS)t1T1〉 ≥
1

200

(
1− 3φ(S)

2

)t
. (8.3.8)

Therefore, in any such set T1, there is a vertex that satisfy (8.3.2), so the volume of the set of vertices

that satisfy (8.3.2) is at least half of vol(S).

Using equations (8.3.6) and (8.3.7), (8.3.8) is equivalent to the following equation,

〈√πT1
, Qt
√
πT1
〉 ≥ 1

200
(3〈
√
πS , Q

√
πS〉 − 2)

t
. (8.3.9)

We prove the above equation using Lemma 8.3.5. Let T2 = S − T1, and define

fT1 := IT1

√
πS =

√
vol(T1)πT1/vol(S) (8.3.10)

fT2
:= IT2

√
πS =

√
vol(T2)πT2

/vol(S)

Since T1 ∩ T2 = ∅, 〈fT1
, fT2
〉 = 0, and ‖fT1

+ fT2
‖ =

∥∥√πS∥∥ = 1. Furthermore, since vol(T1) ≥
vol(S)/2 ≥ vol(T2), ‖fT1

‖ ≥ ‖fT2
‖. Therefore, Q, fT1

, fT2
satisfy the requirements of Lemma 8.3.5.

Finally, since

〈√πT1 , Q
t√πT1〉 ≥ 〈fT1 , Q

tfT1〉,

(8.3.8) follows from Lemma 8.3.5. This completes the proof of Proposition 8.3.1.

Lemma 8.3.2. Let Q ∈ RV×V be a symmetric positive semidefinite matrix. Then, for any f : V →
R with norm ‖f‖ = 1, and integer t > 0,

〈Qtf, f〉 ≥ 〈Qt−1f, f〉〈Qf, f〉 ≥ . . . ≥ 〈Qf, f〉t.

Proof. Since all of the inequalities in lemma’s statement follow from the first inequality, we only

prove the first inequality. Let f1, f2, . . . , fn be the set of orthonormal eigenfunctions of Q with the
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corresponding eigenvalues λ1, λ2, . . . , λn. For any integer t ≥ 1, by Corollary 7.1.4 and Lemma 7.1.7,

〈Qtf, f〉 =

n∑
i=1

〈f, fi〉2λti. (8.3.11)

On the other hand, since {f1, . . . , fn} is an orthornormal system, we have

n∑
i=1

〈f, fi〉2 = ‖f‖2 = 1.

For any t > 0, let gt : R→ R such that gt(λ) = λt; it follows that,

∑
i

〈f, fi〉2λti = EΛ∼D [gt(Λ)] ,

where PΛ∼D [Λ = λi] = 〈f, fi〉2. Using equation (8.3.11) we may rewrite the lemma’s statement as

follows,

ED [gt−1(Λ)g1(Λ)] ≥ ED [gt−1(Λ)]ED [g1(Λ)]

Since Q is positive semidefinite, for all t > 0, gt(.) is increasing in the support of D. The above

inequality follows from the Chebyshev’s sum inequality, see Fact 8.3.3 below.

Fact 8.3.3 (Chebyshev’s Sum inequality). Let a1 ≥ a2 ≥ . . . ≥ an, and b1 ≥ b2 ≥ . . . ≥ bn. Then,

for any probability distribution D defined on 1, 2, . . . , n

Ei∼D [ai · bi] ≥ Ei∼D [ai] · Ei∼D [bi] .

We remark that variants of Lemma 8.3.2 is previously studied in the literature. For example,

the following lemma is proved in [MS59, BR65] (see also [Lon66] for various generalizations).

Lemma 8.3.4 ([MS59, BR65]). For any non-negative symmetric matrix Q ∈ RV×V , and any non-

negative unit norm f : V → R, and any integer t > 0,

〈Qtf, f〉 ≥ 〈Qf, f〉t.

Lemma 8.3.5. Let Q ∈ Rn×n be a symmetric positive semidefinite matrix such that all eigenvalues

are at most 1, and f, g ∈ Rn such that 〈f, g〉 = 0, ‖f + g‖ = 1, and ‖f‖ ≥ ‖g‖. Then, for any

integer t > 0,

〈Qtf, f〉 ≥ 1

200
(3〈Q(f + g), (f + g)〉 − 2)

t

Proof. Let h := f + g. Since f is orthogonal to g, we have ‖g‖2 ≤ 1/2 ≤ ‖f‖2. Let f1, f2, . . . , fn

be the set of orthonormal eigenfunctions of Q with corresponding eigenvalues λ1, λ2, . . . , λn. Let



www.manaraa.com

CHAPTER 8. NEW MACHINERIES 202

α > 0 be a constant that will be fixed later in the proof. Define B := {i : |〈f, fi〉| ≥ α|〈g, fi〉|}. First

observe that,

〈Qtf, f〉 =

n∑
i=1

〈f, fi〉2λti ≥
∑
i∈B
〈f, fi〉2λti ≥

1

(1 + 1/α)2

∑
i∈B
〈h, fi〉2λti, (8.3.12)

where the equality follows from equation (8.3.11), the first inequality uses the assumption that Q is

positive semidefinite, and the last inequality follows from the definition of B, that is for any i ∈ B,

〈f, fi〉2 ≥ (〈h, fi〉/(1 + 1/α))2. Let s :=
∑
i∈B〈h, fi〉2. First, we lower bound s by a function of α,

s =
∑
i∈B
〈h, fi〉2 = 1−

∑
i/∈B

〈h, fi〉2 ≥ 1− (1 + α)2 ‖g‖2 ≥ 1− α2 − 2α

2
. (8.3.13)

The last equation follows by the fact that ‖g‖2 ≤ 1/2. On the other hand, since Q is PSD, by

Jensen’s inequality,

1

s

∑
i∈B
〈h, fi〉2λti ≥

(
1

s

∑
i∈B
〈h, fi〉2λi

)t

≥
(∑n

i=1〈h, fi〉2λi − (1− s)
s

)t
≥

(
1− 1− 〈Qh, h〉

(1− α2 − 2α)/2

)t
, (8.3.14)

where the second inequality follows by the assumptions that max1≤i≤n λi ≤ 1, and that ‖h‖ = 1,

and the last inequality follows by (8.3.13) and that 〈Qh, h〉 ≤ 1. Putting equations (8.3.12) and

(8.3.14), and letting α = 0.154 we get,

〈Qtf, f〉 ≥ 1− α2 − 2α

2(1 + 1/α)2

(
1− 1− 〈Qh, h〉

(1− α2 − 2α)/2

)t
≥ 1

200
(3〈Qh, h〉 − 2))

t

8.3.1 Lower Bounds on Uniform Mixing Time of Random Walks

In this short section we prove lower bounds on the mixing time of reversible Markov Chains. Since

any reversible finite state Markov Chain can be realized as a random walk on a weighted undirected

graph, for simplicity of notations, we model the Markov Chain as a random walk on a weighted

graph G. See Section 7.4 for background on random walks and mixing time.
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Recall that the ε-uniform mixing time of the chain is defined as

τ∞(ε) := min

{
t :

∣∣∣∣P t(u, v)

π(v)
− 1

∣∣∣∣ ≤ ε,∀u, v ∈ V} . (8.3.15)

We remark that that the uniform mixing time can be considerably larger than the mixing time in

total variation distance. The bottleneck ratio uses φ(G) to provide lower bound on the mixing time

of random walks (see e.g. [LPW06, Section 7.2]),. It shows that for any graph G

τ∞(1/4) ≥ τ1(1/4) ≥ 1

4φ(G)
.

Noting equation (7.8.1), there is a O(φ(G) log(πmin)) gap between the upper bound and lower bound

of τ∞(.). The φ(G) gap is because of the square root loss between λ2 and φ(G) in Cheeger’s inequality

and it is unavoidable.

In the next proposition we prove stronger lower bounds on the uniform mixing time of any

reversible Markov Chain. Our result shows that if small sets expand, then the log(n) gap between

upper bound and lower bound of τ∞(.) can be recovered.

Proposition 8.3.6. For any (weighted) graph G = (V,E), any S ⊆ V with vol(S) ≤ vol(V )/2, and

0 < ε < 1, if φ(S) ≤ 0.7, then

τ(ε) ≥ log(vol(V )/2vol(S))

2φ(S)
− 1.

Proof. Let t ≥ − log(2π(S))/2φ(S)−1 be an integer. Since the random walk is not necessarily a lazy

walk, P is not necessarily a PSD operator, so we cannot directly apply Proposition 8.3.1. Instead

we can use Lemma 8.3.4 that does not need a PSD assumption. So, for Q = D1/2ISPISD
−1/2,

Ev∼πS [rem(v, t, S)] = 〈Qt
√
πS ,
√
πS〉 ≥ 〈Q

√
πS ,
√
πS〉t = (1− φ(S))t

where the first equality follows from equations (8.3.3) and (8.3.6), and the last equality follows by

(8.3.7). Thus, there exists a vertex u ∈ S such that

rem(u, t, S) ≥ (1− φ(S))
t ≥ 2π(S).

where in the last inequality we used the assumption that φ(S) ≤ 0.7. Since PX0∼u [Xt ∈ S] ≥
rem(u, t, S), there is a vertex v ∈ S such that,

P t(u, v)

π(v)
≥ PX0∼u [Xt ∈ S]

π(S)
≥ 2π(S)

π(S)
= 2,

where the first inequality uses PX0∼u [Xt ∈ S] =
∑
v∈S P

t(u, v). Therefore, |P
t(u,v)−π(v)|
π(v) ≥ 1, and
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by equation (8.3.15), for any ε < 1, τ(ε) ≥ t.

We remark that the above bound only holds for the uniform mixing time, and it can provide

much stronger lower bound than the bottleneck ratio, if d(S)� vol(V ).
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Chapter 9

Universal Bounds on Laplacian

Eigenvalues

In this chapter, we use spectral embedding to provide a unifying framework for bounding all the

eigenvalues of graphs. For example, we show that for any finite graph with n vertices and all k ≥ 2,

the kth largest eigenvalue is at most 1−Ω(k3/n3), which extends the only other such result known,

which is for k = 2 only and is due to [LO81]. This upper bound improves to 1 − Ω(k2/n2) if the

graph is regular. We generalize these results, and we provide sharp bounds on the spectral measure

of various classes of graphs, including vertex-transitive graphs and infinite graphs, in terms of specific

graph parameters like the volume growth.

As a consequence, using the entire spectrum, we can provide (improved) upper bounds on the

return probabilities and mixing time of random walks with considerably shorter and more direct

proofs. Our work introduces spectral embedding as a new tool in analyzing reversible Markov

chains. We also provide several algorithmic applications.

The results of this chapter are based on a joint work with Russell Lyons in [LO12]. Many of our

results extend naturally to infinite graphs. But, for the sake of accessibility, in this chapter we only

work with finite graphs. For reader who are interested in the extension to infinite graphs we refer

them to [LO12].

9.1 introduction

There have been a great many papers that upper bound the return probability or the mixing time

of random walks. It is known that return probabilities are closely related to the spectrum of the

normalized Laplacian. Therefore, once we can control the eigenvalues, we can reproduce, or even

improve, bounds on return probabilities (see e.g. Corollary 9.5.5 below). We prove universal lower

205



www.manaraa.com

CHAPTER 9. UNIVERSAL BOUNDS ON LAPLACIAN EIGENVALUES 206

Figure 9.1.1: An example of a graph where λk = Ω(k3/n3). In this graph each clique has size Θ(n/k)
and cliques are connected by paths of length Θ(n/k).

bounds on eigenvalues of the normalized Laplacian operator, equivalently, universal upper bounds

on the eigenvalues of the random walk matrix. The usual methods for obtaining such bounds involve

indirect methods from functional analysis. By contrast, our method is direct, which leads to very

short proofs, as well as to improved bounds. By Lemma 8.1.7, all we need to do is to bound from

below the energy of an isotropic embedding. We use simple properties of Hilbert spaces, as well as

underlying properties of G, to achieve this goal. Our work thus introduces spectral embedding as a

new tool in analyzing reversible Markov chains.

Our main contributions are the following results, all of which we believe to be new, as well as

the technique used to establish them. The sharpness of these results (up to a constant factor) is

discussed briefly here and in more detail in the body of the paper.

Theorem 9.1.1. For every finite, unweighted, connected graph G, and k ≥ 1,

λk ≥
(k − 1)3

3200n3
.

For each k, this is sharp up to a constant factor as shown by the following example: We may

assume that k < n/6. Let G consist of k cliques of size ∼ 2n/(3k) joined in a cycle by paths of

length ∼ n/(3k) (see Figure 9.1.1 for an illustration). For each i = 1, . . . , k, define fi to be the

function that is 1 on the i-th clique and goes to 0 linearly on each of the paths leaving that clique,

reaching 0 at the midpoint. It is straightforward to calculate that R(fi) ∼ 27k3/n3. Since fi’s are

disjointly supported, by Lemma 7.2.1, λk ≤ 54k3/n3.

With the additional hypothesis of regularity, above result can improved to Ω
(
(k − 1)2/n2

)
. In

fact, only a bound for the ratio of the maximum degree to the minimum degree is needed.

Theorem 9.1.2. For every unweighted, connected, regular graph G and for 1 ≤ k ≤ n, we have

λk ≥
(k − 1)2

100n2
.
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This result is evidently sharp as shown by the example of a cycle, which also shows sharpness of

the next result.

Above results can be employed to bound τ∞(1/4) for unweighted (regular) graphs. For example,

it implies that τ∞(1/4) ≤ 8n3 for any graph G, and τ∞(1/4) ≤ 24n2 for regular graphs. These results

have been known implicitly in the sense that they can be deduced from known results in probability

theory. So, we do not cover the proofs here and we refer the readers to [LO12] for detailed proof.

Finally, the case of transitive graphs is especially interesting and especially well studied, yet, to

the best of our knowledge, the following theorem has not been proved in this generality.

An automorphism of a graph G is a permutation σ : V → V such that for any edge (u, v) ∈ E,

we have (σ(u), σ(v)) ∈ E. A graph G is vertex-transitive, if for every two vertices u, v ∈ V , there is

an automorphism σ : V → V such that σ(u) = v. For example, observe that any vertex-transitive

graphs is regular. For a vertex v ∈ G and r ≥ 0, let N(v, r) be the number of vertices whose shortest

path distance to v is at most r. If G is vertex transitive, then, by definition, N(u, r) = N(v, r) for

every two vertices u, v ∈ V . Therefore, we may drop the index v and use N(r). Also for s ≥ 0, we

let

N−1(s) := sup{r ≥ 0 : N(r) ≤ s}.

Theorem 9.1.3. For every connected, unweighted, vertex-transitive graph G of degree w, and any

k ≥ 2,
8w

(N−1(4n/(k − 1)))2
≤ λk

As an example, suppose that G is a n = l× l torus as defined in Subsection 7.3.2. Then, since G

is vertex-transitive we can apply the above theorem with w = 2, Since N−1(4n/(k−1)) = Θ(
√
n/k),

we get λk = Ω(k/n). Noting the spectrum of the torus as proved in Subsection 7.3.2, shows that

the theorem is tight up to constant factors,

We provide some algorithmic applications of the above results in Section 9.5. We design a slightly

sub-exponential time approximation algorithm to the uniform sparsest cut problem on unweighted

graph that beats the [ARV09]
√

log(n) approximation factor. Furthermore, building on [Lyo05b],

we design a local algorithm to approximate the number of spanning trees of massive graphs. Also,

We believe the results and the techniques can be generalized and used in several areas

We prove Theorem 9.1.2 in Section 9.2, Theorem 9.1.1 in Section 9.3, Theorem 9.1.3 in Section 9.4.

We describe some algorithmic applications in Section 9.5.

9.1.1 Related Works

There have been many studies bounding from above the eigenvalues of the (normalized) Laplacian

(equivalently, bounding the eigenvalues of the (normalized) adjacency matrix from below). For

example, Kelner et al. [KLPT11] show that for n-vertex, bounded-degree planar graphs, one has

that λk = O(k/n).
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However, to the best of our knowledge, universal lower bounds were known only for the second

smallest eigenvalue of the normalized Laplacian. Namely, Landau and Odlyzko [LO81] showed that

for every simple connected graph of size n, λ2 ≥ 1/n3.

On the other hand, there have also been a great many papers that bound from above the return

probabilities of random walks, both on finite and infinite graphs. Such bounds correspond to lower

bounds on eigenvalues. In fact, the asymptotics of large-time return probabilities correspond the

behavior of the smallest eigenvalues.

Our methods would work as well for the eigenvalues λ̃k of combinatorial Laplacian L. In this

case, [Fri96] has determined the minimum of λ̃k for each k over all unweighted n-vertex graphs. As

noted there, his bound implies that λ̃k = Ω(k2/n2); this immediately implies that λk = Ω(k2/n3)

by comparison of Rayleigh quotients, but this is not sharp, as indicated by Theorem 9.1.1.

9.1.2 Notations

For a vertex u ∈ V , we use nei(u) := {v : (u, v) ∈ E} to denote the neighbors of u in G. In this

chapter we assume that G is a connected unweighted graph, w(u, v) = 1 for all (u, v) ∈ E.

We say an embedding F : V → Rk is non-trivial, if there is v ∈ V such that F (v) 6= 0. We say

F is centered if ∑
v∈V

w(v)F (v) = 0.

In next lemma we show if F is centered, then every ball BF (v, ‖F (v)‖) does not cover at least

one vertex of G.

Lemma 9.1.4. For every non-trivial centered embedding F : V → H of a finite graph G, and for

any u ∈ V ,

BF
(
u, ‖F (u)‖

)
6= V.

Proof. If F (u) = 0, the statement follows since F is a non-trivial embedding. So assume ‖F (u)‖ 6= 0.

For the sake of contradiction, suppose BF
(
u, ‖F (u)‖

)
= V . Then for every vertex v ∈ V , we have〈

F (v), F (u)
〉
≥ 0. Since F is centered, we have

0 =
∑
v∈V

w(v)
〈
F (u), F (v)

〉
≥ w(u)

〈
F (u), F (u)

〉
> 0 ,

a contradiction.

For technical reasons in this chapter we slightly change the definition of spectral embedding, and

we remove the coordinate corresponding to f1. So, in all of this chapter we let F : V → Rk−1,

F (v) = (f2(v), . . . , fk(v)).
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Recall that f1, . . . , fk form an orthonormal system in `2(V,w), and R(fi) = λi.

The consequence of this definition is that spectral embedding is a centered embedding. This is

because for any 2 ≤ i ≤ k, 〈∑
v∈V

F (v)w(v),1i−1

〉
= 〈fi,1〉w = 0.

Consequently, we can employ Lemma 9.1.4 and argue that balls do not cover all vertices of G.

9.2 Regular Graphs

In this section we prove Theorem 9.1.2. We lower bound the eigenvalues of L, for regular graphs,

by Ω(k2/n2). In this section we assume that G is unweighted and w-regular, that is w(v) = w for

all v ∈ V .

We next give an overview of the proof. The idea is to choose a vertex u far from the origin

in the spectral embedding, i.e., ‖F (u)‖2 = Ω
(
k/(nw)

)
. We consider a ball B ⊂ Rk−1 of radius

‖F (u)‖ /2 centered at F (u). We bound λk below by lower bounding the energy of a function f(v) =

〈F (v), F (u)/ ‖F (u)‖〉 with f(u) = ‖F (u)‖ along the shortest path from u to the vertices outside of

B. To obtain a good lower bound, we need to show that the length r of this path is O
(
n/(kw)

)
.

We use the regularity of the graph to show that the shortest path has length O
(
|B|/w

)
. Then we

use the isotropy property to show that |B| = O(n/k). Together, these give the bound we want on

the length of the path. Using the starting value of f , we obtain that λk = Ω
(
F (x)2/r

)
= Ω

(
k2/n2

)
,

which completes the proof of the theorem.

We now begin the actual proof. Let F : V → Rk−1 be a centered spectral embedding. By

Lemma 8.1.1, there is a vertex x ∈ V such that ‖F (u)‖2 ≥ k−1
nw . We define f ∈ `2(V ) by

∀v ∈ V f(v) :=

〈
F (u)

‖F (u)‖
, F (v)

〉
.

In particular, observe that f(u) = ‖F (u)‖. By Corollary 8.1.8, λk ≥ R(f), so it suffices to show

that R(f) = Ω
(
f(u)2kw/n

)
= Ω

(
k2/n2

)
.

Let

B := Bf (u, |f(u)|/2).

First, by Lemma 8.1.2,

1 =
∑
v∈V

w · f(v)2 ≥
∑
v∈B

w · f(u)2/4 = |B|w ‖F (u)‖2 /4 ≥ |B|(k − 1)

4n
. (9.2.1)

Second, since f ∈ span{f2, . . . , fk}, and F is centered, f is also centered. Thus, by Lemma 9.1.4 we

have B 6= V . Since B 6= V and G is connected, there is a path from u to a vertex outside of B. Let

P be the shortest path from u to any vertex outside of B, and let r be the length (number of edges)
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of this path.

Lemma 9.2.1. If G is w-regular, then |B| ≥ w · (r − 1)/3.

Proof. W.l.o.g. we assume that r ≥ 1. Let P = v0, . . . , vr where v0 = u and vr /∈ B. Let

S = {v0, v3, v6, . . . , v3b(r−2)/3c}. Since P is the shortest path from u to outside of B, each vertex

of S is not connected to any other vertex of S, and each pair of vertices of S does not have any

common neighbor. Moreover, since 3b(r − 2)/3c ≤ r − 2, each vertex of S is only connected to the

vertices inside B. Since G is w-regular, every vertex of S has w− 2 neighbors in B−P that are not

adjacent to any other vertices of S. Therefore,

|B| ≥ r + |S|(w − 2) ≥ r +
(w − 2) · (r − 1)

3
≥ w · (r − 1)

3
.

We consider two cases.

i) |nei(u) ∩B| ≤ w/2. By Corollary 8.1.8,

λk ≥ Ef ≥
∑

v/∈B:(v,u)∈E

|f(v)− f(u)|2 ≥ w

2

(
‖F (u)‖ /2

)2 ≥ (k − 1)

8n

and we are done.

ii) |nei(u) ∩B| > w/2. We first show that |B| ≥ w · r/6, and then we prove the theorem. If r = 1,

then since |nei(u)∩B| ≥ w/2, |B| ≥ w/2. Otherwise, by Lemma 9.2.1 |B| ≥ w(r−1)/3 ≥ w·r/6.

Therefore, by Corollary 8.1.8 and Lemma 8.1.10,

λk ≥ Ef ≥ E(P ) ≥ 1

r
(‖F (u)‖ /2)2 ≥ w ‖F (u)‖2

24|B|
≥ (k − 1)2

96n2
,

where the third inequality follows by the fact that the Euclidean distance of endpoints of P is

at least the radius of B which ‖F (u)‖ /2, and the last inequality follows by equation (9.2.1).

This proves Theorem 9.1.2.

9.3 General Graphs

In the preceding section, we proved a bound of Ω(k2/n2) on λk, for regular unweighted graphs.

In this section, we prove Ω(k3/n3) for all unweighted graphs, and we prove Theorem 9.1.1. This

answers a question of [Lyo05b] (see (3.14) there). As we show later this result has applications in

estimating the number of spanning trees or approximating sparsest cut problem.
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Before getting into the details of the proof of Theorem 9.1.1, we describe a very different approach

based on our results on Higher order Cheeger’s inequality that provide a worse lower bound on λk.

By Theorem 10.1.1, for any k ≥ 2, λk & ρ(k)2/ log k. So, if we prove a lower bound on ρ(k) that

provides a lower bound λk. Consider k disjoint sets S1, . . . , Sk ⊆ V . Since these sets are disjoint there

is one, say S1 with only n/k vertices. Since G is unweighted, w(S1, S1) ≥ 1, and vol(S1) ≤
(|S1|

2

)
.

Therefore,

λk &
ρ(k)2

log k
≥ φ(S1)2

log k
=

w(S1, S1)2

log(k) · vol(S1)2
≥ 1

log(k) ·
(
n/k

2

)2 = Ω
( k4

log(k) · n4

)

We prove Theorem 9.1.1 by showing that R(F ) = Ω
(
k3/n3). Our proof is a generalization of the

proof of Theorem 9.1.2. Here, instead of just lower bounding the Rayleigh quotient by considering a

ball around a single vertex, we take Ω(k) disjoint balls about Ω(k) vertices chosen carefully so that

their spectral norm is within a constant factor of the average.

This requires us to use the higher-dimensional embedding F , not merely its 1-dimensional pro-

jection f .

Let b := d(k − 1)/2e. We use Algorithm 11 to choose b disjoint balls based on the spectral

embedding of G.

Algorithm 11 Ball-Selection(α)

Let S0 ← V .
for i = 1→ b do

Choose a vertex ui in Si−1 that maximizes ‖F (ui)‖
√
d(ui).

Let Si ← Si−1 −BF (ui, α ‖F (ui)‖).
end for

return BF (u1, α ‖F (u1)‖ /2), . . . , BF (ub, α ‖F (ub)‖ /2).

The next lemma shows properties of Ball-Selection that will be used in the proof. In the rest of

the proof, we let α := 1/4.

Lemma 9.3.1. The returned balls satisfy

i) For each 1 ≤ i ≤ b, ‖F (ui)‖ ≥
√
k/3n · w(ui).

ii) For every 1 ≤ i < j ≤ k/2,

BF

(
ui,

α

2
‖F (ui)‖

)
∩BF

(
uj ,

α

2
‖F (uj)‖

)
= ∅.

Proof. First observe that by property Corollary 8.1.5, for each 1 ≤ i ≤ k/2, we have

MF (BF (ui, α ‖F (ui)‖)) ≤
1

1− 4α2
= 4/3.
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Since by equation (8.1.2) at the beginning of the algorithm MF (S) =MF (V ) = k − 1, and by

above equation, in each iteration of the for loop MF (S) decreases by no more than 4/3,

MF (Sb−1) ≥ k − 1− (b− 1)4/3 ≥ (k − 1)/3.

where we used the definition of b.

Therefore, by Lemma 8.1.1, for every 1 ≤ i ≤ b,

‖F (ui)‖ ≥

√
MF (SI)

n · w(ui)
≥

√
k − 1

3n · w(ui)
.

This proves (i). Finally, (ii) simply follows by the fact that each center ui is only contained in its

own ball and none of the rest of b− 1 balls.

In the rest of the proof let Bi := B(ui, α ‖F (ui)‖ /2), for all 1 ≤ i ≤ b. In the next lemma we

prove strong lower bounds on the energy of any ball Bi. Then, we will lower bound the numerator

of the Rayleigh quotient of F simply by adding up these lower bounds.

Lemma 9.3.2. For every 1 ≤ i ≤ b,

EF (Bi) >
k − 1

200 · n · |Bi|2
.

Proof. We consider two cases. If w(ui) ≤ |Bi|, then we lower bound EF (Bi) by measuring the energy

of the edges of a shortest path from xi to the outside. Otherwise, we simply lower bound EF (Bi) by

the stretch of edges of ui to its neighbors outside of Bi.

i) w(ui) ≤ |Bi|. Since F is a centered embedding there is a vertex outside of Bi by Lemma 9.1.4.

Let Pi be the shortest path with respect to the graph distance in G from ui to any vertex outside

of Bi. Since G is connected, Pi is well defined. Using Lemma 8.1.10, we can lower bound the

energy of Bi by

E(Bi) ≥
α2 ‖F (ui)‖2

4|Bi|
≥ k − 1

200 · n · w(ui) · |Bi|
, (9.3.1)

where the second inequality holds by (i) of Lemma 9.3.1. By the above inequality, if w(ui) ≤ |Bi|,
then E(Bi) >

k−1
200·n·|Bi|2 , and we are done.

ii) w(ui) > |Bi|. Since G is a simple graph, at least w(ui) − |Bi| + 1 of the neighbors of ui in G

are not contained in Bi. That is, |nei(ui)−Bi| ≥ w(ui)− |Bi|+ 1. We lower bound the energy



www.manaraa.com

CHAPTER 9. UNIVERSAL BOUNDS ON LAPLACIAN EIGENVALUES 213

of Bi by the energy of the edges between ui and its neighbors that are not contained in Bi:

E(Bi) ≥
∑

(v,ui)∈E
v/∈Bi

‖F (ui)− F (v)‖2 ≥ |nei(ui)−Bi|
α2

4
‖F (ui)‖2

>
(
w(ui)− |Bi|+ 1

) k − 1

200 · n · w(ui)
≥ k − 1

200 · n · |Bi|
.

The second inequality uses the radius of the ball Bi, the third inequality follows from (9.3.1).

Now we are ready to lower bound R(F ).

Proof of Theorem 9.1.1. By property (ii) of Lemma 9.3.1, the balls are disjoint. Therefore,∑b
i=1 |Bi| ≤ n. Hence, Lemma 8.1.7 yields

λk ≥ R(F ) =
EF
k − 1

≥ 1

2(k − 1)

b∑
i=1

E(Bi) ≥
1

k − 1

b∑
i=1

k − 1

400 · n · |Bi|2
≥ (k − 1)3

3200 · n3

where the second inequality follows by the fact that each edge is counted in at most two balls, and

the last inequality follows by convexity of the function s 7→ 1/s2.

9.4 Vertex-Transitive Graphs

In this section we assume that G is an unweighted vertex-transitive w-regular graph and we prove

lower bounds on the eigenvalues of G. Before proving Theorem 9.1.3 we need to prove several

properties of vertex-transitive graphs.

We abuse notation and we also use σ to denote an automorphism operator. For a function

f : V → R, σf(v) = f(σ−1(v)). The next lemma describes several properties of σ as an operator.

Fact 9.4.1. Any automorphism σ of G satisfies the following

i) Lσ = σL.

ii) σ is a unitary operator, meaning that σσT = σTσ = I.

Above properties are easy to verify and we don’t prove them here.

Lemma 9.4.2. Let 1 < k < n such that λk < λk+1. For any two vertices u, v ∈ V , ‖F (u)‖ =

‖F (v)‖. Furthermore, for any automorphism σ,

‖F (u)− F (v)‖ = ‖F (σ(u))− F (σ(v))‖ .
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Proof. Let g2, . . . , gk ∈ `2(V ) be orthonormal eigenfunctions of L corresponding to λ2, . . . , λk. Let

S be the vector space of any linear combinations of g2, . . . , gk. For any automorphism σ of G, and

2 ≤ i ≤ k, we have

Lgi = λigi ⇒ σLgi = Lσgi = λiσgi.

So, σgi is also an eigenfunction of λi.

Next, we show that σg2, . . . , σgk also form a basis for S. Since σ is a unitary operator, σg2, . . . , σgk

also form an orthonormal system. This is because for any 2 ≤ i, j ≤ k, 〈σgi, σgj〉 = 〈gi, gj〉. On the

other hand, since λk+1 > λk and λ2 > λ1, for all 2 ≤ i ≤ k, σgi ∈ S. So, σg2, . . . , σgk form another

basis for S.

For a function f ∈ `2(V ), let

ΠS(f) :=

k∑
i=2

〈f, gi〉gi,

be the projections of f to S. Then, since both g2, . . . , gk and σg2, . . . , σgk form a basis for S,

‖ΠS(f)‖2 =

k∑
i=2

〈f, gi〉2 =

k∑
i=2

〈σf, σgi〉2 = ‖ΠS(σf)‖2 .

Now, fix u, v ∈ V and choose σ such that σ(u) = σ(v). Then,

‖F (u)‖ =
1√
w
‖ΠS(1u)‖ =

1√
w
‖ΠS(σ1u)‖ = ‖F (v)‖ .

Similarly, for any u, v ∈ V .

‖F (u)− F (v)‖ =
1√
w
‖ΠS(1u − 1v)‖ =

1√
w
‖ΠS(σ(1u − 1v))‖ = ‖F (σ(u))− F (σ(v))‖ .

For a vertex u, let β(u) := maxv:(u,v)∈E ‖F (u)− F (v)‖2 . By above lemma β(u) = β(v) for all

u, v. Therefore, we drop u and use β. By the above lemma we can write the Rayleigh quotient of F

as follows.

λk ≥
∑

(u,v)∈E ‖F (u)− F (v)‖2∑
v∈V w ‖F (v)‖2

≥
max(u,v)∈E ‖F (u)− F (v)‖2

2w · ‖F (v)‖2
=

n · β
2w · (k − 1)

. (9.4.1)

It remains to lower bound β.

Proof of Theorem 9.1.3. W.l.o.g we assume that λk < λk+1. Our proof strategy is similar to

Theorem 9.1.2 Fix a vertex u ∈ G, and let f : V → R such that

f(v) := 〈F (v), F (u)/ ‖F (u)‖〉.
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Also, let B := Bf (u, f(u)/2). By equation (9.2.1), |B| ≤ 4n/(k − 1). Let

r :=
f(u)

2
√
β

=
‖F (u)‖

2
√
β

=

√
k − 1

4n
√
β
,

and let B′ be the set of vertices where their shortest path distance to u is at most r. We shall show

that B′ ⊆ B. By equation (9.4.1), r ≥
√

1/(8wλk). Thus,

N
(√ 1

8w · λk

)
≤ N(r) = |B′| ≤ |B| ≤ 4n

k − 1
,

and we get 8w/N−1(4n/(k − 1)) ≤ λ2
k which proves the theorem.

It remains to show that B′ ⊆ B. First observe that for edge (v, v′) ∈ V , we have

√
β ≥ ‖F (v)− F (v′)‖ ≥

∣∣∣∣〈F (v)− F (v′),
F (u)

‖F (u)‖

〉∣∣∣∣ = |f(v)− f(v′)| .

Since there is a path of length at most r from u to every vertex in B′, we have

∀v ∈ B′ |f(v)− f(u)| ≤ r
√
β = f(u)/2 .

Thus every v ∈ B′ also belongs to B.

9.5 Applications

Our first application is an approximation algorithm for the uniform sparsest cut problem with a

better than O(
√

log n) approximation factors that run in sub-exponential time.

Theorem 9.5.1. There exists an algorithm such that for any unweighted graph G and any given

c > 1, it finds a set of conductance O(
√

log(n)/c)φ(G) in time 2n·O((c/ logn)1/3).

Proof. We use the following result of Guruswami and Sinop [GS13].

Theorem 9.5.2 (Guruswami and Sinop [GS13]). There exists an algorithm that for any graph G

satisfying λk ≥ 2φ(G), finds a set of conductance O(φ(G)) in time 2O(k).

We consider two cases.

i) φ(G) ≥ log(n)/c. In this case we simply use the Cheeger’s inequality and we find a set of

conductance
√

8φ(G) = O(φ(G) ·
√

log(n)/c).

ii) φ(G) < log(n)/c. In this case by Theorem 9.1.1, for k = O(n · c1/3/ log1/3 n),

λk = 2 log(n)/c ≥ 2φ(G).
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Thus, we can employ Theorem 9.5.2 and give a constant factor approximation in time 2k =

2n·O((c/ logn)1/3).

As an example, that for c =
√

log(n) we obtain a O(log(n)1/4) approximation algorithm that

runs in time 2O(n/ log(n)1/6)

Our second application is a fast local algorithm for approximating the number τ(G) of spanning

trees of a finite massive graph, G. The problem of counting the number of spanning trees of a graph

is one of the fundamental problems in graph theory, for which Theorem 2.8.1 (Matrix-Tree Theorem)

gives a simple O(n3)-time algorithm. For very large n, however, even this is too slow. For a general

graph, τ(G) can be as large as nn−2, which is its value for a complete graph by Cayley’s theorem

[Cay89].

A local graph algorithm is one that is allowed to look only at the local neighborhood of random

samples of vertices of the graph. The notion of graph-parameter estimability involves estimating a

graph parameter, such as τ(G), using a local graph algorithm (see, e.g., [Ele10] or [Lov12, Chapter 22]

for a discussion). We prove that τ(G) is estimable in this sense. In fact, we prove estimability in

an even stronger sense. Suppose that we have access to G only through an oracle that supports the

following simple operations:

• Select a uniformly random vertex of G.

• For a given vertex v ∈ V , select a uniformly random neighbor of v.

• For a given vertex v ∈ V , return w(v).

The proof of the next corollary presents a local algorithm for approximating the number of spanning

trees of G that uses an oracle satisfying the above operations, as well as knowledge of n and |E|.
For any given ε > 0, our algorithm approximates 1

n log τ(G) within an ε-additive error using only

O
(

poly(ε−1 log n)
)

queries.

Corollary 9.5.3. Let G be a finite, unweighted, connected graph. Given an oracle access to G that

satisfies the above operations, together with knowledge of n and |E|, there is a randomized algorithm

that for any given ε, δ > 0, approximates log τ(G)/n within an additive error of ε, with probability

at least 1− δ, by using only Õ(ε−5 + ε−2 log2 n) log(1/δ) many oracle queries.

We remark that here ε can be any number greater than 0. For example letting ε = n0.1, we get

a 2n0.9 multiplicative approximation of τ(G) in time O(
√
n polylog n).

We use the following statement of [Lyo05b, Proposition 3.1].

Proposition 9.5.4 (Lyons [Lyo05b]). Suppose that G is an unweighted, connected graph. Then

log τ(G) = − log
(
4|E|

)
+
∑
v∈V

log 2w(v)−
∑
t≥1

1

t

(∑
v∈V

P t(v, v)− 1
)
.
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Proof. Write det′A for the product of the non-zero eigenvalues of a matrix A. As shown by [RS74]

(see also [Chu04, Theorem 2]), we may rewrite the Matrix-Tree Theorem as

τ(G) =

∏
v∈V 2w(v)∑
v∈V 2w(v)

det′(I − P )

[the proof follows from looking at the coefficient of s in det
(
I −P − sI

)
= (det 2D)−1 det(L− 2sD)

and using the Matrix-Tree Theorem in its original form with cofactors]. Thus,

log τ(G) = − log
(
4|E|

)
+
∑
v∈V

log 2w(v) + log det′(I − P ) . (9.5.1)

Let λ̂k be the eigenvalues of P with λ̂1 = 1. We may rewrite the last term of equation (9.5.1) as

log det′(I − P ) =

n∑
k=2

log(1− λ̂k) = −
n∑
k=2

∑
t≥1

λ̂tk/t

= −
∑
t≥1

n∑
k=2

λ̂tk/t = −
∑
t≥1

1

t
(traceP t − 1) .

where the last equality follows by Lemma 7.1.7. Since traceP t =
∑
v∈V P

t(v, v), the desired formula

now follows from this and (9.5.1).

The following is an immediate corollary of Theorem 9.1.1.

Corollary 9.5.5. For any simple, unweighted, connected graph G, and any integer t > 0,

1

n

(∑
v∈V

P t(v, v)− 1

)
< 17 · t−1/3.

Proof. First of all, although P is not symmetric, D1/2PD−1/2 is symmetric and it has the same

eigenvalues as of P . Thus, by Lemma 7.1.7,

∑
v∈V

P t(v, v) = trace(P t) = trace(D1/2P tD−1/2) =

n∑
i=1

(1− λi/2)t,
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Since λi ≤ 2 for all 2 ≤ i ≤ n, by Theorem 9.1.1, we have 0 ≤ 1− λi/2 ≤ 1− i3/6400n3. Therefore,

∑
v∈V

P t(v, v)− 1 =

n∑
i=1

(1− λi/2)t − 1 ≤
n∑
i=1

(
1− i3

6400n3

)t
− 1

≤
n∑
i=1

exp
(
− ti3

6400n3

)
− 1 ≤

∫ n

s=0

exp
(
− ts3

6400n3

)
ds

≤ 18.57n

t1/3

∫ ∞
s=0

e−s
3

ds ≤ 17nt−1/3.

Proof of Corollary 9.5.3. First, by Proposition 9.5.4,∣∣∣ log τ(G) + log
(
4|E|

)
−
∑
v∈V

log 2w(v) +
∑

1≤t<2r

1

t

(∑
v∈V

P t(v, v)− 1
)∣∣∣ =

∑
t≥2r

1

t

(∑
v∈V

P t(v, v)− 1
)

< n
∑
t≥2r

17

t4/3
< n

45

r1/3
.

where we used Corollary 9.5.5. Choose r :=
⌈
90ε−3

⌉
, so that 45r−1/3 ≤ ε/2. Write s :=

∑
1≤t<2r 1/t.

Let W := 1
n

∑
v log 2w(v) and Y :=

∑
v

1
n

∑2r−1
t=1 P t(v, v)/(st). Then, by above inequality,∣∣∣∣τ(G)

n
− log(4|E|)

n
+W − sY +

s

n

∣∣∣∣ ≤ ε/2 .
Therefore, we just have to approximate W − sY within an additive error of ε/2. The details of the

algorithm are described below.

Algorithm 12 Approximate Counting of Spanning Trees

Input: ε > 0.
Let r ←

⌈
90ε−3

⌉
and s←

∑
1≤t<2r 1/t.

N ←
⌈
64 log(1/δ)s2/ε2

⌉
.

for i = 1→ N do
Let v be a randomly chosen vertex of G.
Sample 1 ≤ t < 2r with probability 1/st.
Run a t-step lazy simple random walk from v, and let Yi ← I [Xt = v].

end for
Sample

⌈
256 log(1/δ)(log n)2/ε2

⌉
random vertices of G, and let W̃ be the average of the logarithm

of twice the degree of sampled vertices. return −n−1log(4|E|) + W̃ − s(Y1 + . . .+ YN )/N + s/n.

We start by describing how to approximate Y within an ε/4s error (hence, to approximate sY

within an ε/4 error). We use a Monte Carlo sampling method. Let X0, X1, . . . , Xt represent a t-step
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lazy simple random walk started from a vertex of G. Then

Y =
∑
v∈V

1

nst

2r−1∑
t=1

P [Xt = v | X0 = v]

=
∑
v∈V

∑
1≤t<2r

∑
v1,...,vt∈V

vt=v

1

nst
P [X1 = v1, . . . , Xt = vt | X0 = v] .

Consider a random walk starting at a random vertex and lasting a random length of time. Namely,

let D be the distribution on walks of lengths in [1, 2r) where

PD [(v0, v1, . . . , vt)] =
1

nst
P [X1 = v1, . . . , Xt = vt | X0 = v0] .

Then Y = PD [{(v0, v1, . . . , vt) : vt = v0}]. First we describe how to sample from D, then show how

to approximate Y . First we sample a random vertex v of G, then we select a random 1 ≤ t < 2r

with probability 1/st (note that
∑

1≤t<2r 1/st = 1 by definition of s). Finally, we choose a t-step

random walk started from y and compute I [Xt = v]. See the details in Algorithm 12.

We approximate Y by sampling N :=
⌈
64 log(1/δ)s2/ε2

⌉
independent elements of D and com-

puting their average. Let Yi := I [Xt = v] be the ith sample of D. By definition, Yi ∈ [0, 1] and

E [Yi] = Y . Since Y1, . . . , YN are independent, Hoeffding’s inequality gives

P
[∣∣∣∣Y1 + . . .+ YN

N
− Y

∣∣∣∣ ≥ ε

4s

]
≤ 2 exp

(
− ε

2N

16s2

)
≤ δ/2 .

Therefore, with probability at least 1−δ/2, we have that s(Y1 + . . .+YN )/N approximates sY within

an error of ε/4. It remains to approximate W within error ε/4 and with probability at least 1− δ/2.

That can be done easily by sampling O(ε−2 log δ−1 log2 n) independent uniform random vertices of

G and taking the average of the logarithm of twice their degrees, W̃ (see step 8 of Algorithm 12).

Since log 2w(y) ≤ 2 log n for all y ∈ V , again by Hoeffding’s inequality we have

P
[
|W̃ −W | ≥ ε

4

]
≤ δ/2 .

Therefore, by the union bound the algorithm succeeds with probability at least 1− δ.
It remains to compute the number of oracle accesses. We used O(ε−2log δ−1 log2 n) accesses to

approximate W . On the other hand, we can compute each Yi with at most 2r = O(ε−3) oracle

accesses. Therefore, we can approximate Y with at most

2Nr = O
(
ε−5log δ−1s2

)
= O

(
ε−5log2 ε−1 log δ−1

)
= Õ

(
ε−5 log δ−1

)
many queries.
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We note that knowing |E| is not really necessary for this algorithm, since it contributes a term

of size O(log(n)/n), which will be much less than ε in any reasonable example where one might use

this algorithm.
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Chapter 10

Higher Order Cheeger’s Inequality

In this chapter we study higher-order analogs of Theorem 7.8.1. and develop new multi-way spectral

partitioning algorithms. The results of this chapter are based on a joint work with James Lee and

Luca Trevisan in [LOT12]. Since the appearance of this paper our results and techniques have been

used in several recent papers (see e.g. [Tan12, Mic13, LO12, TY12]).

We will extend and generalize several of results in this chapter later in Chapter 11 and Chapter 13.

10.1 Introduction

For any k ∈ N, the k-way expansion constant, is defined as

ρ(k) := min
disjoint S1,S2,...,Sk

max
1≤i≤k

φ(Si), (10.1.1)

where the minimum is over all collections of k non-empty, disjoint subsets S1, S2, . . . , Sk ⊆ V . For

example, observe that for any graph G, ρ(2) = φ(G). As another example, observe that ρ(k) =

0 if and only if G has at least k connected components. One can also consider other norms of

φ(S1), . . . , φ(Sk) as the quality of a k-way partitioning. For example, we can define ρ1(k) as the

average conductance,

ρ1(k) := min
disjoint S1,...,Sk

φ(S1) + . . .+ φ(Sk)

k
.

In this sense ρ(k) can be considered as the infinity norm and any upper bound on ρ(k) provides an

upper bound on all other norms.

In Section 7.2 we proved that for any graph G λk = 0 if and only if G has k connected components.

By above argument, we obtain ρG(k) = 0 ⇐⇒ λk = 0. Recall that Cheeger’s inequality provides a

robust version of this fact for k = 2. Our main theorem implies that for any graph G, ρ(k) ≈ 0 ⇐⇒
λk ≈ 0. In this sense, it can be seen as a generalization of Cheeger’s inequality.

221
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Theorem 10.1.1. For every graph G, and every k ∈ N, we have

λk
2
≤ ρG(k) ≤ O(k2)

√
λk . (10.1.2)

Furthermore, there is a polynomial time algorithm that construct the k disjoint sets, S1, . . . , Sk such

that max1≤i≤k φ(Si) ≤ O(k2)
√
λk.

This resolves a conjecture of Miclo [Mic08]; see also [DJM12], where some special cases are

considered. We prove several variants of this theorem in Subsection 10.2.4 and Theorem 10.4.5. We

remark that from Theorem 10.1.1, it is easy to find a partition of the vertex set into k non-empty

pieces such that every piece in the partition has expansion O(k3)
√
λk (see Theorem 10.2.7 for more

details).

The left side of equation (10.1.2) is very easy to prove and follows from Claim 7.8.2. So, we

only need to prove the right side of equation (10.1.2). Our proof is algorithmic and leads to new

algorithms for k-way spectral partitioning. Let F : V → Rk be any isotropic mapping of G (as

defined in equation (8.1.3)). Our proof shows that,

ρ(k) ≤ O(k2)
√
R(F ). (10.1.3)

Note that to obtain equation (10.1.2) from above equation, we only need to use the fact that

the spectral embedding is isotropic (see Lemma 8.1.2), and that its Rayleigh quotient is λk, (see

Lemma 8.1.7). In other words, our theorems are robust in the sense that they extend to any isotropic

embedding.

Our algorithm provides a theoretical justification for clustering algorithms that use the bottom k

eigenvectors of the Laplacian1 to embed the vertices into Rk, and then apply geometric considerations

to the embedding. See [VM03, Lux07] for a survey of such approaches. As a particular example,

consider the work of Jordan, Ng and Weiss [NJW02] which applies a k-means clustering algorithm

to the embedding in order to achieve a k-way partitioning. Our proof of Theorem 10.1.1 employs

a similar algorithm, where the k-means step is replaced by a random geometric partitioning. It

remains an interesting open problem whether k-means itself can be analyzed in this setting.

Tightness of Higher Order Cheeger’s inequality

Observe that although there is a dependency to k in the RHS of equation (10.1.2), similar to the

original Cheeger’s inequality both sides of the inequality are independent of the size of the graph.

As we will show in Section 10.5 a poly-logarithmic dependency to k is necessary in the RHS of

equation (10.1.2). However, it is still an open question if the dependency to k can be improved to a

poly-logarithmic function. For all we know, a polynomial dependency to k is necessary in the RHS of

1Equivalently, algorithms that use the top k eigenvectors of the adjacency matrix.
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equation (10.1.3), and because of that our current proof techniques cannot improve the dependency

to k in the RHS of equation (10.1.2) to a poly-logarithmic function. In particular, let G be a union

of a cycle and k − 2 isolated vertices. Then, λ1 = λ2 . . . = λk−1 = 0 and λk = Θ(1/n2), while,

ρ(k) = Θ(1/n). Consequently, if F : V → Rk is the spectral embedding as defined in equation (8.1.1),

ρ(k) = Θ(
√
λ1 + . . .+ λk) = O(

√
kR(F )).

Example 10.1.2 (Cycle). Let G be a cycle of length n. By our discussion in Subsection 7.3.1, for

k = o(n), λk = Θ(k2/n2). On the other hand, if we choose k disjoint paths of length ≈ n/k we

obtain that ρ(k) = Θ(n/k). Therefore, φ(k) = Θ(
√
λk). This shows that we must have

√
λk in the

RHS of equation (10.1.2).

10.1.1 Finding many sets and small-set expansion

If one is interested in finding slightly fewer sets, our approach performs significantly better.

Theorem 10.1.3. For every graph G, and every k ∈ N, we have

ρG(k) ≤ O(
√
λ2k log k) . (10.1.4)

If G is planar then, the bound improves to,

ρG(k) ≤ O(
√
λ2k) , (10.1.5)

and if G excludes Kh as a minor, then ρG(k) ≤ O(h2
√
λ2k) .

We remark that the bound in equation (10.1.4) holds with 2k replaced by (1 + δ)k for any

δ > 0, but where the leading constant now becomes δ−3; see Corollary 10.4.2. Louis, Raghavendra,

Tetali and Vempala [LRTV12] have independently proved a somewhat weaker version of the bound

in equation (10.1.4), using rather different techniques. Specifically, they show that there exists an

absolute constant C > 1 such that ρG(k) ≤ O(
√
λCk log k).

Theorem 10.1.3 has applications to the small-set expansion problem in graphs (see Subsec-

tion 7.7.3 for background).

Arora, Barak and Steurer [ABS10] prove the bound,

φc(k1/100) ≤ O(
√
λk logk n),

Note that for k = nε and ε ∈ (0, 1), one achieves an upper bound of O(
√
λk), and this small loss in

the expansion constant is crucial for applications to approximating small-set expansion. This was
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recently improved further [OT12, OW12] by showing that for every α > 0,

φc(k1−α) ≤ O(
√

(λk/α) logk n) .

These bounds work fairly well for large values of k, but give less satisfactory results when k is smaller.

Louis, Raghavendra, Tetali and Vempala [LRTV11] proved that

φc(
√
k) ≤ O(

√
λk log k),

and conjectured that
√
k could be replaced by k. Since for any 1 ≤ k, φc(k) ≤ ρ(k), Theorem 10.1.3

immediately yields,

φc(k/2) ≤ O(
√
λk log k) (10.1.6)

resolving their conjecture up to a factor of 2 (and actually, as discussed earlier, up to a factor of

1 + δ for every δ > 0).

Moreover, (10.1.6) is quantitatively optimal for the noisy hypercube graphs (see Section 10.5),

yielding an optimal connection between the kth Laplacian eigenvalue and expansion of sets of size

≈ n/k.

It is interesting to note that in [KLPT11], it is shown that for n-vertex, bounded-degree planar

graphs, one has λk = O(k/n). Thus the spectral algorithm guaranteeing (10.1.5) partitions such

a planar graph into k disjoint pieces, each of expansion O(
√
k/n). This is tight, up to a constant

factor, as one can easily see for an
√
n ×
√
n planar grid, in which case the set of size ≈ n/k with

minimal expansion is a
√
n/k ×

√
n/k subgrid.

Large gaps in the spectrum.

We recall that in the practice of spectral clustering, it is often observed that the correct number

of clusters is indicated by a large gap between adjacent eigenvalues, i.e., if λk+1 � λk, then one

expects the input graph can be more easily partitioned into k pieces than k+ 1. In Section 10.3, we

prove a result supporting this phenomenon.

Theorem 10.1.4. There is a constant C > 0 such that for every graph G and k ∈ N, the following

holds. If λ4k ≥ C(log k)2λ2k, then

ρG(k) ≤ O(
√
λ2k) .

The key point is that the implicit constant in the upper bound is independent of k, unlike the

bound (10.1.4).
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10.1.2 Proof Techniques

We now present an overview of the proofs of our main theorems, as well as explain our general

approach to multi-way spectral partitioning. By Lemma 7.8.3 for any non-negative function f : V →
R, it is possible to find a subset S ⊆ {v ∈ V : f(v) 6= 0} such that that φG(S) ≤

√
2R(f). Thus,

in order to find k disjoint, non-expanding subsets S1, S2, . . . , Sk ⊆ V , it suffices to find k disjointly

supported functions h1, h2, . . . , hk : V → R such that R(hi) is small for each i = 1, 2, . . . , k.

In fact, in the same paper that Miclo conjectured the validity of Theorem 10.1.1, he conjectured

that finding such a family {hi} should be possible [Mic08, DJM12]. We resolve this conjecture and

prove the following theorem in Subsection 10.2.4.

Theorem 10.1.5. For any graph G = (V,E) and any 1 ≤ k ≤ n, there exist disjointly supported

functions h1, h2, . . . , hk : V → R such that for each i = 1, 2, . . . , k, we have

R(hi) ≤ O(k6)λk .

Observe Lemma 7.2.3 can be seen as a special case of the above theorem for the case of k = 2.

Let F be the spectral embedding with respect to the first k eigenfunctions of L as defined in

equation (8.1.1). Since by Lemma 8.1.7 R(F ) ≤ λk, our goal is to “localize” F on k disjoint regions

to produce disjointly supported functions h1, h2, . . . , hk : V → R, each with small Rayleigh quotient

compared to R(F ). In order to ensure that R(hi) is small for each i, we must ensure that each

region captures a large fraction of the `2 mass of F , and that our localization process is sufficiently

smooth.

Isotropy and spreading. The first problem we face is that, in order to find k disjoint regions

each with large `2 mass, it should be that the `2 mass of F is sufficiently well-spread. This directly

follows from Lemma 8.1.2 and Corollary 8.1.4. As we mentioned earlier, this is the only property of

the spectral embedding that we use in the proof. We show that if F is isotropic, then there are k

disjointly supported functions h1, . . . , hk such that R(hi) ≤ O(k6)R(F ).

A natural approach would be to find k regions R1, . . . , Rk and define,

hi(v) =

‖F (v)‖ if v ∈ Ri

0 otherwise.

Unfortunately, this sharp cutoff could make Ehi significantly larger than EF , henceforth, R(hi) is

much larger thanR(F ). For example, suppose thatG has only one edge (u, v), and ‖F (u)− F (v)‖2 �
‖F (v)‖2. Then EF = ‖F (u)− F (v)‖2. Now, if v ∈ R1 and u /∈ R1, then

Eh1
≥ ‖F (v)‖2 � ‖F (u)− F (v)‖2 = EF .
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Thus we must pursue a smoother approach for localizing F . Let d(u, v) = ‖F (u)− F (v)‖.
Suppose we choose S1, . . . , Sk such that they are well separated, i.e., for all 1 ≤ i < j ≤ k, d(Si, Sj) ≥
Ωk(1). Now, we may define,

hi(v) = ‖F (v)‖ ·max
{

0, 1− d(v, Si)

ε

}
.

where d(u, v) is just the Euclidean distance between F (u) and F (v), and ε = Ok(1). Unfortunately,

this doesn’t work either. Suppose (u, v) is the only edge of G for which F (u) 6= F (v), ‖F (v)‖2 =

poly(n). If v ∈ S1 and d(u, S1) = d(u, v) = ε, then

Eh1
= ‖F (v)‖2 � ‖F (u)− F (v)‖2 = EF .

To resolve this problem instead of the Euclidean distance we use the radial projection distance

in the above definition.

The radial projection distance. We would like to think of two vertices u, v ∈ V as close if their

Euclidean distance ‖F (u)−F (v)‖ is small compared to their norms ‖F (u)‖, ‖F (v)‖. Recall that the

radial projection distance is defined as follows, for all u, v ∈ V ,

dF (u, v) =

∥∥∥∥ F (u)

‖F (u)‖
− F (v)

‖F (v)‖

∥∥∥∥ .
and if F (u) = 0(resp.F (v) = 0) we use 0 instead of F (u)/ ‖F (u)‖ (resp. F (v)/ ‖F (v)‖. Observe

that this distance function has several nice properties:

i) For all u, v ∈ V , dF (u, v) ≤ 2.

ii) Radial projection distance is a Euclidean distance. If we define Γ(v) = F (v)/ ‖F (v)‖ when

F (v) 6= 0 and Γ(v) = 0 otherwise, then dF (., .) is just a Euclidean distance metric on the

vectors {Γ(v)}v∈V .

Now, similar to above, suppose we have S1, . . . , Sk that are well separated with respect to dF (., .),

and let

hi(v) = ‖F (v)‖ ·max
{

0, 1− dF (v, Si)

ε

}
.

for some ε = Ωk(1). Suppose we have we have an edge (u, v) such that ‖F (u)− F (v)‖ � ‖F (u)‖,
v ∈ S1. Then,

Eh({(u, v)}) . ‖F (v)‖2 · dF (u, v)2

ε2
≈ ‖F (u)− F (v)‖2

ε2
= EF ({(u, v)})/ε2.

In Lemma 10.2.1 we show that by a similar argument we can upper bound R(hi) as a function of

R(F ).
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Our goal now becomes to find dense, well separated regions in dF , i.e., S1, . . . , Sk ⊆ V such that

each of which contains a large fraction of the `2 mass of F and such that their pairwise distance in

dF is Ωk(1).

Finding dense well-separated regions: Random space partitions. In order to find many

separated regions, we rely on the theory of random partitions discussed in Section 7.9. We use

padded-partitioning of Euclidean metrics discussed in Theorem 7.9.2. Since dF (., .) is a Euclidean

metric, we can partition our set of points randomly into pieces of diameter at most 1/2 so that the

expected fraction of `2 mass which is close to the boundary of the partition is small i.e., o(1). Then,

we take unions of the interiors of the pieces to find dense well-separated sets. Since by the spreading

property of dF Lemma 8.1.3. no set in the partition can contain a large fraction of the `2 mass, we

can merge these set making sure that each of the merged regions contain Ω(1/k) fraction of the total

mass. The details are described in Subsection 10.2.2 Subsection 10.2.3. We use these separated sets

as the supports of our family {hi}, allowing us to complete the proof of Theorem 10.1.5.

As we described in Section 7.9, the notion of “close to the boundary” depends on the dimension

k, and thus the smoothness of our maps {hi} will degrade as the dimension grows. For many families

of graphs, however, we can appeal to special properties of their intrinsic geometry.

Exploiting the intrinsic geometry. It is well-known that the shortest-path metric on a planar

graph has many nice properties, but dF is, in general, not a shortest-path geometry. Thus it is

initially unclear how one might prove a bound like (10.1.5) using our approach. The answer is to

combine information from the spectral embedding with the intrinsic geometry of the graph.

We define d̂F as the shortest-path pseudometric on G, where the length of an edge (u, v) ∈ E is

precisely dF (u, v). In Section 10.2 we show that it is possible to do the partitioning in the metric d̂F ,

and thus for planar graphs (and other generalizations), we are able to achieve dimension-independent

bounds in Theorem 10.1.3.

This technique also addresses a common shortcoming of spectral methods: The spectral em-

bedding can lose auxiliary information about the input data that could help with clustering. Our

“hybrid” technique for planar graphs suggests that such information (in this case, planarity) can be

fruitfully combined with the spectral computations.

Dimension reduction. In order to obtain the tight bound in equation (10.1.4) for general graphs,

we have to improve the quantitative parameters of our construction significantly. The main loss in

our preceding construction comes from the ambient dimension k.

Thus our first step is to apply dimension-reduction techniques: We randomly project our points

from Rk into RO(log k) and we use Theorem 8.2.1 to argue that with a constant probability the

Rayleigh quotient and the spreading property are preserved under the dimension reduction, and

that is all we need for the proof.

A new multi-way Cheeger inequality. Dimension reduction only yields a loss of O(log k) in
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(10.1.4). In order to get the bound down to
√

log k, we have to abandon our goal of localizing

eigenfunctions. In Section 10.4, we give a new multi-way Cheeger rounding algorithm that combines

random partitions of the radial projection distance dF , and random thresholding based on ‖F (·)‖
(as in Cheeger’s inequality). By analyzing these two processes simultaneously, we are able to achieve

the optimal loss.

10.1.3 A general algorithm

Given a graph G = (V,E) and any embedding F : V → Rk (in particular, the spectral embedding

(8.1.1)), our approach yields a general algorithmic paradigm for finding many non-expanding sets.

For some r ∈ N, do the following:

1. (Radial decomposition)

Find disjoint subsets S1, S2, . . . , Sr ⊆ V using the values {F (v)/‖F (v)‖ : v ∈ V }.

2. (Cheeger sweep)

For each i = 1, 2, . . . , r,

Sort the vertices Si = {v1, v2, . . . , vni} so that

‖F (v1)‖ ≥ ‖F (v2)‖ ≥ · · · ≥ ‖F (vni)‖ .

Output the set with smallest conductance among the ni − 1 sets of the form,

{v1, v2, . . . , vj}

for 1 ≤ j ≤ ni − 1.

As discussed in the preceding section, each of our main theorems is proved using an instantiation

of this schema. For instance, the proof of Theorem 10.1.1 partitions uses the radial projection

distance dF . The proof of equation (10.1.5) uses the induced shortest-path metric d̂F . And the

proof of equation (10.1.4) uses dF ′ where F ′ : V → RO(log k) is obtained from random projection.

The details of the scheme for equation (10.1.4) is provided in Section 10.6. A practical algorithm

might use r-means to cluster according to the radial projection distance (c.f. Algorithm 2). We will

provide some justification for using r-means in Section 10.3.

We remark that partitioning the normalized vectors as in step (i) is used in the approach of

[NJW02], but not in some other methods of spectral partitioning (see [SM00, VM03] for alternatives).

Interestingly, while we were working on this problem we were not aware of this fact. Coincidently,

we reached to the idea of using normalized vectors and in particular the radial projection distance

function when we were trying find the right way to localize the spectral embedding F . Our analysis

suggests a theoretical justification for partitioning using the normalized vectors.
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10.2 Localizing eigenfunctions

Given a mapping F : V → Rk, in the present section, we show how to find disjointly supported

functions h1, h2, . . . , hk : V → R with R(hi) ≤ kO(1)R(F ), where k ∈ N. In order to find many

disjointly supported functions from a geometric representation F : V → Rh, it should be that the `2

mass of F is not too concentrated. As we discussed earlier, all we need to assume is that F satisfies

the spreading property.

10.2.1 Smooth localization

Given a map F : V → Rl and a subset S ⊆ V , we now show how to construct a function supported

on a small-neighborhood S, which retains the `2 mass of F on S, and which doesn’t stretch edges

by too much.

Recall that d̂ is the shortest path metric defined on a metric d(., .). We prove several of our

statements for d̂F to get the tightest results, but we recommend the readers to first understand the

whole arguments for the actual radial projection distance, dF .

Lemma 10.2.1 (Localization). Let F : V → Rl, and let d : V × V → R+ be a distance function

such that for any u, v ∈ V ,

‖F (u)‖ · d(u, v) ≤ α · ‖F (u)− F (v)‖ .

Then, for every subset S ⊆ V and number ε > 0, there exists a mapping h : V → R which satisfies

the following three properties:

1. h(v) = ‖F (v)‖ for v ∈ S,

2. supp(h) ⊆ Bd̂(S, ε), and

3. if {u, v} ∈ E, then |h(u)− h(v)| ≤ (1 + α
ε )‖F (u)− F (v)‖.

Proof. First, define

ψ(v) := max

(
0, 1− d̂(v, S)

ε

)
.

Since d̂(v, S) is a metric, ψ(.) is (1/ε)-Lipschitz with respect to d̂, so since d̂ and d agree on edges,

we have for every (u, v) ∈ E,

|ψ(u)− ψ(v)| ≤ 1

ε
· d(u, v) . (10.2.1)

Finally, set h(v) := ψ(v) · ‖F (v)‖.

Properties (i) and (ii) are immediate from the definition, thus we turn to property (iii). Fix
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{u, v} ∈ E. We have,

|h(u)− h(v)| =
∣∣∣ψ(u) ‖F (u)‖ − ψ(v) ‖F (v)‖

∣∣∣
≤ |ψ(v)| · ‖F (u)− F (v)‖+ ‖F (u)‖ · |ψ(u)− ψ(v)| .

Since ψ ≤ 1, the first term is at most ‖F (u)− F (v)‖. Now, using equation (10.2.1), we have

‖F (u)‖ · |ψ(u)− ψ(v)| ≤ 1

ε
· ‖F (u)‖ · d(u, v) ≤ α

ε
· ‖F (u)− F (v)‖,

completing the proof of (iii).

Note that by Lemma 8.1.6, dF satisfies the assumption of above lemma. The preceding construc-

tion reduces the problem of finding disjointly supported set functions to finding separated regions

in (V, d̂F ), each of which contains a large fraction of the `2 mass of F .

Lemma 10.2.2. Let F : V → Rl be given, and let d : V × V → R+ be a distance function such that

for any u, v ∈ V ,

‖F (u)‖ · d(u, v) ≤ α · ‖F (u)− F (v)‖ .

Suppose that for some ε, δ > 0 and r ∈ N, there exist r disjoint subsets T1, T2, . . . , Tr ⊆ V such that

d̂(Ti, Tj) ≥ 2ε for i 6= j, and for every i = 1, 2, . . . , r, we have MF (Ti) ≥ δ · MF (V ). Then, there

exist disjointly supported functions h1, h2, . . . , hr : V → R such that for i = 1, 2, . . . , r, we have

R(hi) ≤
2

δ(r − i+ 1)

(
1 +

α

ε

)2

R(F ) . (10.2.2)

Proof. For each i ∈ [r], let hi : V → R be the result of applying Lemma 10.2.1 to the domain Ti.

Since d̂(Ti, Tj) ≥ β for i 6= j, property (ii) of Lemma 10.2.1 ensures that the functions {hi}ri=1 are

disjointly supported.

Additionally property (i) implies that for each i ∈ [r],

Mhi(V ) ≥MF (Ti) ≥ δ · MF (V ).

and by property (iii) of Lemma 10.2.1, and since the supports are disjoint,

r∑
i=1

Ehi =
∑
u∼v

r∑
i=1

w(u, v)‖hi(u)−hi(v)‖2 ≤ 2
(

1 +
α

ε

)2 ∑
u∼v

w(u, v)‖F (u)−F (v)‖2 ≤ 2
(

1 +
α

ε

)2

EF .

Now we reorder the maps so that Eh1
≤ Eh2

≤ . . . ≤ Ehr , then for each 1 ≤ i ≤ r, we have

Ehi ≤
1

r − i+ 1
·
r∑
j=i

Ehj .
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Therefore, the preceding three inequalities imply (10.2.2).

10.2.2 Merging

From Lemma 10.2.2, to find many disjointly supported functions with small Rayleigh quotient, it

suffices to partition (V, d̂F ) into well separated regions, each of which contains a large fraction of

the `2 mass of F . Given a random partition of the vertices using a padded random partition P, in

the next lemma we show that we can choose a random sample P ∼ P and merge the sets in P to

obtain r dense well-seperated sets for k/2 ≤ r ≤ k.

Lemma 10.2.3. Let r, k ∈ N be given with k/2 ≤ r ≤ k, and suppose that the map F : V → Rl is

(∆, 1
k + k−r+1

8kr )-spreading for some ∆ > 0. Suppose additionally there is a random partition P with

the properties that

1. For every S ∈ P, diam(S, dF ) ≤ ∆, and

2. For every v ∈ V , P
[
Bd̂F (v,∆/α) ⊆ P(v)

]
≥ 1− k−r+1

4r .

Then there exist r disjoint subsets T1, T2, . . . , Tr ⊆ V such that for each i 6= j, we have d̂F (Ti, Tj) ≥
2∆/α, and for every i = 1, 2, . . . , k,

MF (Ti) ≥
1

2k
MF (V ).

Proof. For a subset S ⊆ V , define

S̃ := {v ∈ S : Bd̂F (v,∆/α) ⊆ S} .

By linearity of expectation, there exists a partition P such that for every S ∈ P , diam(S, dF ) ≤ ∆,

and also ∑
S∈P
MF (S̃) ≥

(
1− k − r + 1

4r

)
MF (V ) . (10.2.3)

Furthermore, by the spreading property of F , we have, for each S ∈ P ,

MF (S) ≤ 1

k

(
1 +

k − r + 1

8r

)
MF (V ).

Therefore, we may take disjoint unions of the sets {S̃ : S ∈ P} to form at least r disjoint sets

T1, T2, . . . , Tr with the property that for every i = 1, 2, . . . , r, we have

MF (Ti) ≥
1

2k
MF (V )
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because the first r − 1 pieces will have total mass at most

r − 1

k

(
1 +

k − r + 1

8r

)
MF (V ) ≤

(
1− k − r + 1

4r
− 1

2k

)
MF (V ),

for all r ∈ [k/2, k], leaving at least MF (V )
2k mass left over from (10.2.3).

We mention a representative corollary that follows from the conjunction of Lemmas 8.1.6, 10.2.2

and 10.2.3.

Corollary 10.2.4. Let k ∈ N and δ ∈ (0, 1) be given. Suppose the map F : V → Rl is (∆, 1
k + δ

48k )-

spreading for some ∆ ≤ 1, and there is a random partition P with the properties that

1. For every S ∈ P, diam(S, dF ) ≤ ∆, and

2. For every v ∈ V , P
[
Bd̂F (v,∆/α) ⊆ P(v)

]
≥ 1− δ

24 .

Then there are at least r ≥ d(1− δ)ke disjointly supported functions h1, h2, . . . , hr : V → R such that

R(hi) .
α2

δ∆2
R(F ) .

Proof. In this case, we set r = d(1 − δ/2)ke in our application of Lemma 10.2.3. After extracting

at least d(1− δ/2)ke sets, we apply Lemma 10.2.2, but only take the first r′ = d(1− δ)ke functions

h1, h2, . . . , hr′ .

Note, in particular, that we can apply the preceding corollary with δ = 1
2k to obtain r = k.

10.2.3 Random Partitioning

We now present some theorems applying our machinery to isotropic mappings of G to prove Theo-

rem 10.1.5. In the proof we use several of tools in random partitioning of metric spaces discussed in

Section 7.9.

Theorem 10.2.5. For any δ ∈ (0, 1), and any weighted graph G = (V,E,w), there exist there exists

r ≥ d(1− δ)ke disjointly supported functions h1, h2, . . . , hr : V → R such that

RG(hi) .
k2

δ4
λk . (10.2.4)

where λk is the kth smallest eigenvalue of LG. If G excludes Kc as a minor, then the bound improves

to

RG(hi) .
c4

δ4
λk, (10.2.5)
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and if G has genus at most g ≥ 1, then one gets

RG(hi) .
log2(g + 1)

δ4
λk . (10.2.6)

Proof. Let F : V → Rk be the spectral embedding of G with respect to the first k eigenfunctions

of L as defined in equation (8.1.1). Choose ∆ �
√
δ so that (1 − ∆2)−1 ≤ 1 + δ

48 . In this case,

Lemma 8.1.2 and Lemma 8.1.3 imply that F is (∆, 1
k + δ

48k )-spreading. Now, for general graphs,

since dF is Euclidean, we can use Theorem 7.9.2 applied to dF to achieve α � k/δ in the assumptions

of Corollary 10.2.4. Observe that d̂F ≥ dF , so that Bd̂F (v,∆/α) ⊆ BdF (v,∆/α), meaning that we

can satisfy both conditions (i) and (ii), verifying (10.2.4).

For (10.2.5) and (10.2.6), we use Theorems 7.9.4 and 7.9.5, respectively, applied to the shortest-

path metric d̂F . Again, since d̂F ≥ dF , we have that diam(S, d̂F ) ≤ ∆ implies diam(S, dF ) ≤ ∆, so

conditions (i) and (ii) are satisfied with α � c2/δ and α � log(g + 1)/δ, respectively.

Observe that the above proof extends to any isotropic mapping F where λk is replaced by R(F ).

Next, we use Theorem 8.2.1 to give an alternate bound of O(δ−7 log2 k) · λk for (10.2.4), which

is better for moderate values of δ. We use the essentially the same proof, but first we perform a

dimension reduction of the spectral embedding to a O(δ−2 log k)-dimensional space, and then we

use random partitioning in a much lower dimensional space.

Theorem 10.2.6. For any weighted graph G = (V,E,w) and δ > 0 the following holds. For every

k ∈ N, there exist r ≥ d(1− δ)ke disjointly supported functions h1, h2, . . . , hr : V → R such that

R(hi) . δ−9 log2(k)λk . (10.2.7)

where λk is the k-th smallest eigenvalue of LG.

Proof. Let F : V → Rk be the spectral embedding as defined in equation (8.1.1). We may clearly

assume that δ ≥ 1
2k . Choose ∆ � δ so that (1 − 16∆2)−1(1 + 4∆) ≤ 1 + δ

48 . By Lemma 8.1.2 and

Lemma 8.1.3 F is (4∆, (k(1− 16∆2))−1)-spreading. In this case, for some choice of

l .
1 + log(k) + log (41∆)

∆2
.
O(log k)

δ2
,

with probability at least 1/2, Γk,l satisfies the conclusions of Theorem 8.2.1. Assume that Γ : Rk →
Rl is some map satisfying these conclusions.

Then combining (ii) from Theorem 8.2.1 with Lemma 8.1.3, we see that Γ ◦ F : V → Rl is

(∆, 1
k + δ

48k )-spreading. Now we finish as in the proof of Theorem 10.2.5, using the fact that

l = O(δ−2 log k).
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10.2.4 Higher-order Cheeger inequalities

Finally, we can use theorems in preceding subsection in conjunction with Lemma 7.8.3 to produce

many non-expanding sets, thus obtaining higher order Cheeger inequalities.

Theorem 10.2.7. (Non-expanding k-partition) For any weighted graph G = (V,E,w), there exists

a partition V = S1 ∪ S2 ∪ · · · ∪ Sk such that

φG(Si) . k4
√
λk .

where λk is the kth smallest eigenvalue of LG. If G excludes Kc as a minor, then the bound improves

to

φG(Si) . c2k3
√
λk ,

and if G has genus at most g ≥ 1, then one gets

φG(Si) . log(g + 1)k3
√
λk .

Proof. First apply Theorem 10.2.5 with δ = 1
2k to find disjointly supported functions h1, h2, . . . , hk :

V → R satisfying (10.2.4). Now apply Lemma 7.8.3 to find sets S1, S2, . . . , Sk with Si ⊆ supp(hi)

and φG(Si) ≤
√

2RG(hi) for each i = 1, 2, . . . , k.

Now reorder the sets so that w(S1) ≤ w(S2) ≤ · · · ≤ w(Sk), and replace Sk with the larger set

S′k = V − (S1 ∪ S2 ∪ · · · ∪ Sk−1) so that V = S1 ∪ S2 ∪ · · · ∪ Sk−1 ∪ S′k forms a partition. One can

now easily check that

φG(S′k) =
w(S′k, S

′
k)

vol(S′k)
≤
∑k−1
i=1 w(Si, Si)

vol(S′k)
≤ k · max

1≤i≤k
φG(Si) . k4

√
λk .

A similar argument yields the other two bounds.

Using Theorem Theorem 10.2.5 in conjunction with Lemma 7.8.3 again yields the following.

Theorem 10.2.8. For every δ ∈ (0, 1) and any weighted graph G = (V,E,w), there exist r ≥
d(1− δ)ke disjoint sets S1, S2, . . . , Sr ⊆ V such that,

φG(Si) .
k

δ2

√
λk . (10.2.8)

where λk is the kth smallest eigenvalue of LG. If G excludes Kc as a minor, then the bound improves

to

φG(Si) .
c2

δ2

√
λk ,
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and if G has genus at most g ≥ 1, then one gets

φG(Si) .
log(g + 1)

δ2

√
λk .

We remark that the bound (10.2.8) will be improved, in various ways, in Section 10.4.

10.3 Gaps in the Spectrum

We now show that if there are significant gaps in the spectrum of G, one can obtain a higher-order

Cheeger inequality with no dependence on k.

Theorem 10.3.1. There is a constant c > 0 such that for any 0 < δ < 1/3 such that δk is an integer,

if c · log2(k)
δ9 λk < λ(1+δ)k then there are (1− 3δ)k disjointly supported functions f1, . . . , f(1−3δ)k such

that R(fi) . O(λk/δ
3).

Proof. We start similar to Theorem 10.2.6. Let F : V → Rk be the spectral embedding as defined in

equation (8.1.1). We may clearly assume that δ ≥ 1/k. Choose ∆ � δ so that (1−16∆2)−1(1+4∆) ≤
1 + δ

16 . By Lemma 8.1.2 and Lemma 8.1.3 F is (4∆, (k(1−16∆2))−1)-spreading. For some choice of

l .
1 + log(k) + log (41∆)

∆2
.
O(log k)

δ2
,

with probability at least 1/2, Γk,l satisfies the conclusions of Theorem 8.2.1. So, assume Γ : Rk → Rl

is some map satisfying these conclusions, and let F ′ = F ◦ Γ. Combining (ii) from Theorem 8.2.1

with Lemma 8.1.3, F ′ is (∆, η)-spreading where η = 1
k + δ

16k and R(F ′) ≤ 8R(F ).

Since dF ′ is Euclidean, we can use Theorem 7.9.2 for dF ′ and α � l/δ to achieve a (∆/4, α, 1−
δ/16) random partitioning P. Recall that for a set S ⊆ V , S̃ := {v ∈ S : Bd̂F (v,∆/α) ⊆ S}. By

linearity of expectation there is a partition P such that for any S ∈ P , diam(S, dF ′) ≤ ∆ and

∑
S∈P
MF ′(S̃) ≥ (1− δ/16)MF ′(V ). (10.3.1)

Let us order the sets of P with respect to MF ′(S̃), i.e., let MF ′ S̃1) ≤ MF ′(S̃2) ≤ . . .. We

consider two cases

Case 1: MF ′(S̃(1−2δ)k) > η · MF ′(V )/2. First, we show that for any 1 ≤ i, j ≤ (1 − 2δ)k such

that i 6= j,

BdF ′ (Si,∆/4) ∩BdF ′ (Sj ,∆/4) = ∅.

Otherwise, let S = BdF ′ (Si,∆/4) ∪ BdF ′ (Sj ,∆/4). Then, diam(S, dF ′) ≤ ∆ but MF ′(S) >

η · MF (V ) which is a contradiction with the fact that F ′ is (∆, η) spreading.
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Now by applying Lemma 10.2.2 to S1, . . . , S(1−2δ)k for α = 2, ε = ∆/4 and δ = η we obtain

k(1− 3δ) disjointly supported functions f1, . . . , f(1−3δ)k such that

R(fi) .
1

η · δk ·∆2
R(F ′) = O(λk/δ

3).

So, we are done.

Case 2: MF ′(S̃(1−2δ)k) ≤ η · MF ′(V )/2. We will reach to a contradiction with the fact that log2(k)λk/δ
9 .

λ(1+δ)k. Since F ′ is a (∆, η) spreading, for any i ≤ (1− 2δ)k,

MF ′(S̃i) ≤ η · MF ′(V ).

Therefore we can take disjoint unions of the sets {S̃ : S ∈ P} to form at least r disjoint sets

T1, . . . , Tr for r = d(1 + 3δ/2)ke such that

MF ′(Ti) ≥
1

4k
MF ′(V ).

This is because the first r − 1 piece will have total mass at most

r−1∑
i=1

MF ′(S̃i) ≤ (1− 2δ)k · η · MF ′(V ) +
7δk

2
max

{ 1

2k
,
η

2

}
MF ′(V )

≤ (1− δ/4)(1 + δ/16)MF ′(V )

leaving at least δk
8 MF ′(V ) ≥ MF ′(V )/4k mass left over from equation (10.3.1). Applying

Lemma 10.2.2 to T1, . . . , Tr for ε = ∆/α, δ = 1/4k, we obtain (1 + δ)k disjoint supported

functions f1, . . . , f(1+δ)k such that

R(fi) .
1

1
4k ·

δk
2 ·

∆2

α2

R(F ′) =
c′ · log2(k)λk

δ9
.

for some constant c′ > 0. By Lemma 7.2.1 we get λ(1+δ)k ≤ c · log2(k)λk/δ
9 for c = 2c′. But

this condtriacts with the assumption of the theorem. So this case does not happen.

Using the above theorem in conjunction with Lemma 7.8.3 yields the following.

Corollary 10.3.2. There is a constant c > 0 such that for any 0 < δ < 1/3 such that δk is an

integer, if c · log2(k)
δ9 λk ≤ λ(1+δ)k, then there are (1 − 3δ)k disjoint sets S1, . . . , S(1−3δ)k each of

conductance φ(Si) ≤ O(
√
λk/δ3).

Let us conclude this section by describing the consequences of above results to the spectral

clustering algorithms. The proof of the above theorem confirms the folklore believes that, in a

spectral clustering algorithm, the number of clusters, is best chosen based on the largest gap in the
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spectrum of the underlying graph. Additionally, the proof of the above theorem also provides a

justification for the use of the k-means heuristic in spectral clustering algorithms (see Algorithm 2).

Observe that in Case 1 (the only possible case under the assumptions of the theorem), the support

of each of the functions f1, . . . , f(1−3δ)k is a ball of radius ∆ with respect to the metric dF ′(., .).

In other words, in this case the vertices are concentrated in Θ(k) balls of small radius after the

dimension reduction. It seems plausible that the k-means heuristic could successfully locate a good

partition of the vertices in such a scenario.

10.4 A New Multiway Cheeger Inequality

A main result of this section is the following theorem.

Theorem 10.4.1. For k ∈ {1, 2, . . . , n} and δ ∈ (0, 1), let F : V → Rk be an isotropic mapping.

Suppose that Then there exist r ≥ d(1 − δ)ke disjoint sets S1, S2, . . . , Sr ⊆ V such that for all

1 ≤ i ≤ k,

φ(Si) ≤
1

δ3

√
R(F ) · log(k) .

Corollary 10.4.2. For any weighted graph G = (V,E,w), k ∈ {1, 2, . . . , n}, and δ ∈ (0, 1), there

exist r ≥ d(1− δ)ke disjoint sets S1, S2, . . . , Sr ⊆ V with

φG(Si) .
1

δ3

√
λk log k ,

where λk is the kth smallest eigenvalue of LG.

Note that Theorem 10.2.6 combined with Lemma 7.8.3 is still not strong enough to prove The-

orem 10.4.1. To do that, we need to combine Theorem 8.2.1 with a strong Cheeger inequality for

Lipschitz partitions.

For F : V → Rl, let t ∈ {0,maxv ‖F (v)‖2} be chosen uniformly at random, and for any subset

S ⊆ V , define

Ŝ = {v ∈ S : ‖F (v)‖2 ≥ t} .

Let Et [.] be the expectation over random choice of t.

Lemma 10.4.3. For every ∆ > 0, there exists a partition V = S1 ∪ S2 ∪ · · · ∪ Sm such that for

every i ∈ [m], diam(Si, dF ) ≤ ∆, and

Et
[
w(Ŝ1, Ŝ1) + w(Ŝ2, Ŝ2) + · · ·+ w(Ŝm, Ŝm)

]
Et
[
vol(Ŝ1) + · · ·+ vol(Ŝm)

] .

√
l

∆

√
R(F ) . (10.4.1)

Proof. Since the statement of the lemma is homogeneous in F , we may assume that maxv ‖F (v)‖ = 1.
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By Theorem 7.9.1, there exists a ∆-bounded random partition P satisfying, for every u, v ∈ V ,

P [P(u) 6= P(v)] .

√
l

∆
· dF (u, v) . (10.4.2)

Let P = S1 ∪S2 ∪ · · · ∪Sm, where we recall that m is a random number and S1, . . . , Sm are random

sets.

First, observe that, Et
[
vol(Ŝi)

]
=
∑
v∈Si w(v)‖F (v)‖2 =MF (Si), thus,

Et
[
vol(Ŝ1) + · · ·+ vol(Ŝm)

]
=MF (V ) . (10.4.3)

Next, if {u, v} ∈ E with ‖F (u)‖2 ≤ ‖F (v)‖2, then we have

PP,t
[
{u, v} ∈ E(Ŝ1, Ŝ1) ∪ · · · ∪ E(Ŝm, Ŝm)

]
≤ P [P(u) 6= P(v)] · Pt

[
‖F (u)‖2 ≥ t or ‖F (v)‖2 ≥ t | P(u) 6= P(v)

]
+ Pt

[
t ∈ [‖F (u)‖2, ‖F (v)‖2]

∣∣P(u) = P(v)
]

.

√
l

∆
· dF (u, v)

(
‖F (u)‖2 + ‖F (v)‖2

)
+ ‖F (v)‖2 − ‖F (u)‖2

≤ (‖F (u)‖+ ‖F (v)‖)

(√
l

∆
· dF (u, v)(‖F (u)‖+ ‖F (v)‖) + ‖F (v)‖ − ‖F (u)‖

)

≤ 5
√
l

∆
(‖F (u)‖+ ‖F (v)‖) ‖F (u)− F (v)‖,

where we use PP [.] to denote probability over the random choice of P, and in the final line we have

used Lemma 8.1.6.

Thus, we can use Cauchy-Schwarz to write,

EP,t
[
w(Ŝ1, Ŝ1) + · · ·+ w(Ŝm, Ŝm)

]
.

√
l

∆

∑
{u,v}∈E

w(u, v)(‖F (u)‖+ ‖F (v)‖)‖F (u)− F (v)‖

≤
√
l

∆

√ ∑
{u,v}∈E

w(u, v)(‖F (u)‖+ ‖F (v)‖)2

·
√ ∑
{u,v}∈E

w(u, v)‖F (u)− F (v)‖2

≤
√
l

∆

√
2MF (V ) ·

√
EF .
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Combining this with (10.4.3) yields,

EP
[
Et
[
w(Ŝ1, Ŝ1) + · · ·+ w(Ŝm, Ŝm)

]]
Et
[
vol(Ŝ1) + · · ·+ vol(Ŝm)

] .

√
l

∆
·
√
R(F ) ,

In particular, by Markov inequality a random partition P satisfy the above inequality with proba-

bility 1/2.

We can use the preceding theorem to find many non-expanding sets, assuming that F : V → Rl

has sufficiently good spreading properties.

Lemma 10.4.4. Let k ∈ N and δ ∈ (0, 1) be given. If the map F : V → Rl is (∆, 1
k + δ

4k )-spreading,

then there exist r ≥ d(1− δ)ke disjoint sets T ∗1 , T
∗
2 , . . . , T

∗
r , such that

φG(T ∗i ) .

√
l

δ∆

√
RG(F ) .

Proof. Let V = S1 ∪ S2 ∪ · · · ∪ Sm be the partition guaranteed by applying Lemma 10.4.3 to the

mapping F : V → Rl. Since F is (∆, 1
k + δ

4k )-spreading and each Si satisfies diam(Si, dF ) ≤ ∆, we

can form r′ ≥ d(1− δ/2)ke sets T1, T2, . . . , Tr′ by taking disjoint unions of the sets {Si} so that for

each i = 1, 2, . . . , r′, we have

MF (V )

2k
≤MF (Ti) ≤

MF (V )

k

(
1 +

δ

4

)
.

In particular, Et
[
vol(T̂i)

]
=MF (Ti) ∈ [ 1

2
E
k , (1 + δ

4 )Ek ].

Order the sets so that Et
[
w(T̂i, T̂i)

]
≤ Et

[
w(T̂i+1, T̂i+1)

]
for i = 1, 2, . . . , r′ − 1, and let r =

d(1− δ)ke. Then from (10.4.1), it must be that each i = 1, 2, . . . , r satisfies

Et
[
w(T̂i, T̂i)]

]
.

1

δk
Et

 m∑
j=1

w(Ŝj , Ŝj)


.

√
l

δk ·∆
·
√
R(F ) · Et

 m∑
j=1

vol(Ŝj)

 .

√
l

δk ·∆
·
√
R(F ) · E .

But Et
[
vol(T̂i)

]
�MF (V )/k for each i = 1, 2, . . . , r, showing that

Et
[
w(T̂i, T̂i)

]
Et
[
vol(T̂i)

] .

√
l

δ∆
·
√
R(F ) .
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Therefore, for each 1 ≤ i ≤ r, there is a set T ∗i such that φ(T ∗i ) ≤
√
l · R(F )/δ∆.

We can already use this to improve (10.2.8) in Theorem 10.2.8.

Theorem 10.4.5. For every δ ∈ (0, 1) and any weighted graph G = (V,E,w), there exist r ≥
d(1− δ)ke disjoint, non-empty sets S1, S2, . . . , Sr ⊆ V such that,

φG(Si) .

√
k

δ3/2

√
λk . (10.4.4)

where λk is the kth smallest eigenvalue of LG.

Proof. Let ∆ �
√
δ be such that (1 − ∆2)−1 ≤ 1 + δ

4 . If we take F : V → Rk to be the spectral

embedding coming from the first k eigenfunctions of L, then Lemma 8.1.2 and Lemma 8.1.3 implies

that F is (∆, 1
k + δ

4k )-spreading. Now apply Lemma 10.4.4.

Observe that setting δ = 1
2k in the preceding theorem yields Theorem 10.1.1.

And now we can complete the proof of Theorem 10.4.1.

Proof of Theorem 10.4.1. Choose ∆ � δ so that (1 − 16∆2)−1(1 + 4∆) ≤ 1 + δ
4 . In this case, for

some choice of

l .
1 + log(k) + log (41∆)

∆2
.
O(log k)

δ2
,

with probability at least 1/2, Γk,l satisfies the conclusions of Theorem 8.2.1. Assume that Γ : Rk →
Rl is some map satisfying these conclusions.

Then combining the conclusions of Theorem 8.2.1 with Lemma 8.1.3, we see that F ∗ := Γ ◦ F is

(∆, 1
k+ δ

4k )-spreading, takes values in Rl, and satisfiesR(F ∗) ≤ 8·R(F ). Now applying Lemma 10.4.4

yields the desired result.

10.5 Noisy hypercubes

In the present section, we review examples for which equation (10.1.4) is tight. They also show that

a poly-logarithmic dependency to k is necessary in the RHS of equation (10.1.2).

For k ∈ N and ε ∈ (0, 1) let Hk,ε = (V,E) be the “noisy hypercube” graph, where V = {0, 1}k,

and for any u, v ∈ V there is an edge of weight w(u, v) = ε‖u−v‖1 . We put n = |V | = 2k.

Theorem 10.5.1. For any 1 ≤ C < k and k ∈ N, and S ⊆ V with |S| ≤ Cn/k, we have

φHk,ε(S) &
√
λk log (k/C) ,

where ε = log(2)
log(k/C) .
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Proof. Let H = Hk,ε. Since H is a Cayley graph on abelian group (Z/2Z)k, the eigenfunctions of

LH are χr for any vector S ⊆ [k] (see Section 7.3), where

χS(v) = (−1)
∑
i∈S v(i).

First, the weighted degree of every vertex is

w(u) =
∑
v∈V

ε‖u−v‖1 = (1 + ε)k .

For any S ⊆ [k], let λS be the eigenvalue of LH corresponding to χS . By Theorem 7.3.3

λS = 1− 1

(1 + ε)k

∑
T⊆[k]

χT (S) =
1

(1 + ε)k

∑
T⊆[k]

εT (−1)S∩T = 1−
(1− ε

1 + ε

)|S|
. (10.5.1)

Since there are k sets of size 1, λk ≤ 2ε. We will now show that for S ⊆ V such that |S| ≤ Cn/k,

one has φH(S) ≥ 1
2 , completing the proof of the theorem.

To bound φH(·), we need to recall some Fourier analysis. For f, g : {0, 1}k → R define the inner

product:

〈f, g〉L2(V ) :=
1

n

∑
v∈{0,1}k

f(v)g(v).

The function χS form an orthonormal basis with respect to the above inner product. Therefore,

any function f : {0, 1}k → R has a unique representation as f =
∑
S⊆[k] f̂(S)χS , where f̂(S) :=

〈f, χS〉L2(V ).

For η ∈ [0, 1], the Bonami-Beckner operator Tη is defined as

Tηf :=
∑
S⊆[k]

η|S|f̂(S)χS .

The Bonami-Beckner inequality [Bon70, Bec75] states that

∑
S⊆[k]

η|S|f̂(S)2 = ‖T√ηf‖22 ≤ ‖f‖21+η =

 1

n

∑
v∈{0,1}k

f(v)1+η


2

1+η

. (10.5.2)

Let A be the normalized adjacency matrix of H, i.e. A(u, v) = ε|u⊕v|

(1+ε)k
. By (10.5.1), χS is an

eigenfunction of A with corresponding eigenvalue ( 1−ε
1+ε )

|S|, i.e.

AχS =

(
1− ε
1 + ε

)|S|
χS .
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For S ⊆ V (H), let 1S be the indicator function of S. Therefore,

〈1S , A1S〉L2(V ) =
∑
T⊆[k]

1̂S(T )2

(
1− ε
1 + ε

)|T |
≤ ‖1S‖2 2

1+ε
=

(
|S|
n

)1+ε

,

where the inequality follows from (10.5.2).

Now, observe that for any S ⊆ V , we have

w(S, S) = vol(S)− w(S) = vol(S)− (1 + ε)kn〈1S , A1S〉L2(V )

where we have written w(S) =
∑
u,v∈S w(u, v).

Hence, for any subset S ⊆ V of size |S| ≤ Cn/k, we have

φH(S) =
w(S, S)

w(S)
=
|S| − n〈1S , A1S〉L2(V )

|S|
≥ 1−

(
|S|
n

)ε
≥ 1− (k/C)−ε ≥ 1

2

where the last inequality follows by the choice of ε = log(2)/ log (k/C).

Remark 10.5.2. The preceding theorem shows that even if we only want to find a set S of size n/
√
k,

then for values of k ≤ O(log n), we can still only achieve a bound of the form φH(S) .
√
λk log k.

The state of affairs for k � log n is a fascinating open question.

10.6 Conclusion

In Subsection 10.1.3, we gave a generic outline of our spectral partitioning algorithm. We remark

that our instantiations of this algorithm are simple to describe. As an example, suppose we are given

a weighted graph G = (V,E,w) and want to find k disjoint sets, each of expansion O(
√
λ2k log k)

(recall Theorem 10.1.3). We specify a complete randomized algorithm.

One starts with the spectral embedding F : V → Rk, given by F (v) = (f1(v), f2(v), . . . , f2k(v)),

where f1, f2, . . . , f2k is the `2(V,w)-orthogonal system comprised of the first 2k eigenfunctions of L.

Then, for some l = O(log k), we perform random projection into Rl. Let Γ2k,l : R2k → Rl be the

random linear map given by

Γ2k,l(x) =
1√
l

(〈ζ1,x〉, . . . , 〈ζl,x〉) ,

where {ζ1, . . . , ζl} are i.i.d. 2k dimensional Gaussian vectors. We now have an embedding F ∗ :=

Γ2k,l ◦ F : V → Rl.
Next, for some R = Θ(1), we perform the random space partitioning algorithm from [CCG+98].

Let B denotes the closed Euclidean unit ball in Rl. Consider V ⊆ B by identifying each vertex with
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its image under the map v 7→ F ∗(v)/‖F ∗(v)‖. If {x1,x2, . . .} is an i.i.d. sequence of points in B
(chosen according to the Lebesgue measure), then we form a partition of V into the sets

V =

∞⋃
i=1

[
V ∩B(xi, R)− (B(x1, R) ∪ · · · ∪B(xi−1, R))

]
Here, B(x, R) represents the closed Euclidean ball of radius R about x, and it is easy to see that this

induces a partition of V in a finite number of steps with probability one. Let V = S1 ∪S2 ∪ · · · ∪Sm
be this partition.

We sort the partition {S1, S2, . . . , Sm} in decreasing order according toMF∗(Si). Let k′ = d 3
2ke.

Then for each i = k′ + 1, k′ + 2, . . . ,m, we iteratively set Sa := Sa ∪ Si where

a = argmin{MF∗(Sj) : j ≤ k} .

(Intuitively, we form k′ sets from our total of m ≥ k′ sets by balancing the MF∗(·)-value among

them.) At the end, we are left with a partition V = S1 ∪ S2 ∪ · · · ∪ Sk′ of V into k′ ≥ 3k/2 sets.

To complete the algorithm, for each i = 1, 2, . . . , k′, we choose a value t such that

Ŝi = {v ∈ Si : ‖F ∗(v)‖2 ≥ t}

has the least expansion. We then output k of the sets Ŝ1, Ŝ2, . . . , Ŝk′ that have the smallest expansion.
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Chapter 11

Improved Cheeger’s Inequality

In this chapter we improve the Cheeger’s inequality (Theorem 7.8.1) using higher eigenvalues of

normalized Laplacian matrix, L. Our result shows that the spectral partitioning algorithm (Algo-

rithm 10) is a constant factor approximation algorithm for finding a set with smallest conductance

if λk is a constant for some constant k. This provides some theoretical justification to the empirical

performance of spectral partitioning algorithm in image segmentation and clustering problems. We

extend the analysis to other graph partitioning problems, including multi-way partition, balanced

separator and provide improved approximation algorithms.

The results of this chapter are based on a joint work with Tsz Chiu Kwok, Lap Chi Lau, Yin

Tat Lee and Luca Trevisan [KLL+13].

11.1 Introduction

Spectral partitioning algorithm provides a constant factor approximation algorithm to the sparsest

cut problem when λ2 is an absolute constant. But the approximation factor can be Ω(n) for general

graphs when λ is very small (see Example 7.8.7 for some examples). Nonetheless, this algorithm

has been quite successful in practice in image segmentation [SM00, TM06] or community detection

[LLM10]. Our main goal in this chapter is to justify this success and provide a tighter analysis of

Cheeger’s inequality and in particular the spectral partitioning algorithm.

In Subsection 7.8.2 we showed that both sides of Cheeger’s inequality are tight (up to constant

factors). The left side is tight when G is a hypercube, and the right side is tight when G is a cycle.

Our main result of this chapter is an improved variant of the RHS of Cheeger’s inequality using

higher eigenvalues of the normalized Laplacian matrix.

244
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Theorem 11.1.1. For every undirected graph G and any k ≥ 2, it holds that

φ(G) = O(k)
λ2√
λk
.

Furthermore, this guarantee is achieved by the spectral partitioning algorithm, Algorithm 10 when

given an eigenfunction of λ2.

This improves Cheeger’s inequality, as it shows that λ2 is a better approximation of φ(G) when

there is a large gap between λ2 and λk for any k ≥ 3. It also shows that the spectral partitioning

algorithm is a O(k/
√
λk)-approximation algorithm to the sparsest cut problem, even though it does

not employ any information about higher eigenvalues or higher eigenfunctions. This was quite

surprising for us! In particular, it shows that spectral partitioning algorithm provides a constant

factor approximation to φ(G) when λk is a constant for some constant k, i.e., when G is a low

threshold rank graph. Next we provide an explicit example where the above theorem provides a

significantly tighter analysis of the spectral partitioning algorithm.

Example 11.1.2 (Generalized Barbell graph). Let G consist of k cliques of size ∼ n/k joined in a

cycle (see Figure 11.1.1 for an illustration). Observe that φ(G) = Θ(k/n). Now, for i = 1, 2 define

fi to be the function that is 1 on the ik/4-th clique and goes to 0 linearly on the neighboring cliques.

That is fi is equal to 1 − 4j/k on the clique ik/4 ± j, for 1 ≤ j ≤ k/4. It is straightforward that

R(fi) = Θ(k2/n2) for i = 1, 2. Thus, λ2 = Θ(k2/n2).

Above calculations show that by Theorem 7.8.1 spectral partitioning gives an O(
√
λ2) = O(n/k)

approximation algorithm to φ(G). But since λ2k ≥ 1/ log(k), our theorem shows spectral partitioning

has a significantly better performance. First observe that in any k + 1 disjoint sets S1, . . . , Sk+1,

there is one, say S1, that has at most half of the vertices of each of the cliques. Thus, φ(S1) = Ω(1),

and consequently, ρ(k + 1) = Ω(1). By equation (10.1.4) we get λ2k = Ω(1/ log(k)). Now, by

Theorem 11.1.1 spectral partitioning algorithm provides an O(k log(k)) approximation to φ(G).

The bound in Theorem 11.1.1 is tight up to a constant factor for any k ≥ 2. Let G be a cycle of

length n. As we discussed in Subsection 7.3.1 for k ≤ n/100, λk = Θ(k2/n2). Since φ(G) = Θ(1/n),

we get φ(G) = Θ(kλ2/
√
λk) for any 2 ≤ k ≤ n/100.

Noting our result, one may try to even improve the left side of Cheeger’s inequality using the

higher eigenvalues of L. This is a very interesting open problem and we leave it open for future

works.

11.1.1 Improvements on Applications of Cheeger’s Inequality

Once we improve the Cheeger’s inequality we can apply the same machinery to extensions and

generalizations of this inequality. Roughly speaking, when we have inequalities with the terms
√
λk,
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Figure 11.1.1: An example a graph where Theorem 11.1.1 provide significantly tighter analysis of
spectral partitioning algorithm compared to Theorem 7.8.1. In this graph each clique has size n/k
and cliques placed around a cycle. φ(G) = Θ(n/k), λ2 = Θ(k2/n2), and λ2k = Ω(1/ log(k)).

we may to use our machinery to replace this with λk/
√
λl for some l > k at the cost of losing a

factor of poly(l/k).

Our first applications are improvements of many of our results proved in Chapter 10.

Corollary 11.1.3. For any graph G = (V,E,w) and any l > k ≥ 2,

(i)

ρ(k) ≤ O(lk6)
λk√
λl
.

(ii) For any δ ∈ (0, 1),

ρ(k/2) ≤ O
(
l log2 k

k

)
λk√
λl
.

(iii) If G excludes Kc as a minor,

ρ(k/2) ≤ O
(
c4l

k

)
λk√
λl
.

Part (i) shows that λk is a better approximation of ρ(k) when there is a large gap between λk

and λl for any l > k. Part (ii) implies that ρ(k/2) ≤ O(λk log2 k/
√
λ2k). The factor 2 can be

replaced by (1 − δ) where the leading constant in the RHS is δ10. Similarly part (iii) implies that

ρ(k/2) ≤ O(λk/
√
λ2k) for planar graphs.

Furthermore, our proof shows that the spectral algorithms discussed in Chapter 10 achieve the

above performance. For instance, if λl is a constant for a constant l > k, there is a constant factor

approximation algorithm for the k-way partitioning problem.

Our second application of Theorem 11.1.1 is the minimum bisection problem. In the minimum

bisection problem, the objective is to find a set S with minimum conductance among the sets with

|V |/2 vertices. While it is very nontrivial to find a sparse cut with exactly |V |/2 vertices [FK02, R0̈8],
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it is well known that a simple recursive spectral algorithm can find a balanced separator S with

φ(S) = O(
√
ε) with |S| = Ω(|V |), where ε denotes the conductance of the minimum bisection (e.g.

[KVV04]). We use Theorem 11.1.1 to generalize the recursive spectral algorithm to obtain a better

approximation guarantee when λk is large for a small k.

Theorem 11.1.4. Let

ε := min
vol(S)=vol(V )/2

φ(S).

There is a polynomial time algorithm that finds a set S such that vol(V )/5 ≤ |S| ≤ 4vol(V )/5 and

φ(S) ≤ O(kε/λk).

We remark that although a bisection is defined as a cut with equal number of vertices in the

both sides, above corollary finds a cut with (approximately) equal volume in both sides of the cut.

This is a limitation of spectral algorithms. Nonetheless, the applications are very similar (e.g. we

can use above theorem in divide and conquer algorithms to partition the graph into small pieces

with few edges in between).

11.1.2 More Related Work

Recently, several approximation algorithms are designed for various classes of problems on low

threshold rank graphs (see Subsection 7.7.2). Recall that the subspace enumeration algorithm of

[ABS10] provides an O(1/λk) approximation algorithm for the sparsest cut problem in time nO(k).

The algorithm simply searches for a sparse cut in the (k− 1)-dimensional eigen-space corresponding

to λ1, . . . , λk−1. It is worth noting that for k = 3 the subspace enumeration algorithm is exactly

the same as the spectral partitioning algorithm. Nonetheless, the result in [ABS10] is incomparable

to Theorem 11.1.1 since it does not upper bound φ(G) by a function of λ2 and λ3. Although

algorithms designed specifically for low threshold rank graphs [ABS10, BRS11, GS11] provide much

better approximation guarantees for large values of k compare to Theorem 11.1.1, our results show

that simple spectral algorithms provide nontrivial performance guarantees.

Another direction to show that spectral algorithms work well is to analyze their performance

in a family of graphs with a fixed combinatorial property. Spielman and Teng [ST96] showed that

λ2 = O(1/n) for a bounded degree planar graph, they use this to show that a spectral algorithm

can find a separator of size O(
√
n) in such graphs. This result is extended to bounded genus graphs

by Kelner [Kel04] and to fixed minor free graphs by Biswal, Lee and Rao [BLR08]. This is further

extended to higher eigenvalues by Kelner, Lee, Price and Teng [KLPT11]: λk = O(k/n) for planar

graphs, bounded genus graphs, and fixed minor free graphs when the maximum degree is bounded.

Recall that combining these results with Theorem 10.2.8 implies that ρ(k) = O(
√
k/n) for bounded

degree planar graphs. Note that these results give mathematical bounds on the conductances of the

resulting partitions, but they do not imply that the approximation guarantee of Cheeger’s inequality
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could be improved for these graphs, neither does our result as these graphs have slowly growing

spectrums.

11.1.3 Proof Overview

We start by describing an informal intuition of the proof of Theorem 11.1.1 for k = 3, and then

we describe how this intuition can be generalized. Let f be a non-constant function such that

R(f) ≈ λ2.

Suppose λ2 is small and λ3 is large. Then the higher order Cheeger’s inequality implies that there

is a partitioning of the graph into two sets of small conductance, but in every partitioning into at

least three sets, there is a set of large conductance. So, we expect the graph to have a sparse cut of

which the two parts are expanders; see Chapter 13 for quantitative statements. Since R(f) is small

and f is orthogonal to the constant function, we expect that the vertices in the same expander have

similar values in f and the average values of the two expanders are far apart. Hence, f is similar

to a step function with two steps representing a cut, and we expect that R(f) ≈ φ(G) in this case

(see Theorem 10.3.1 for high dimensional variant of this observation). Therefore, roughly speaking,

λ3 � λ2 implies λ2 ≈ φ(G).

Conversely, Theorem 11.1.1 shows that if λ2 ≈ φ2(G), then λ3 ≈ λ2. One way to prove that

λ2 ≈ λ3 is to find a function f ′ of Rayleigh quotient close to λ2 such that f ′ is orthogonal to both

f and the constant function. For example, if G is a cycle, then λ2 = Θ(1/n2), φ(G) = Θ(1/n), and

f (up to normalizing factors) could represent the cosine function. In this case we may define f ′ to

be the sine function (see Subsection 7.3.1 for a discussion on eigenvalues/eigenfunctions of a cycle).

Unfortunately, finding such a function f ′ in general is not as straightforward. Instead, we find

three disjointly supported functions f1, f2, f3 of Rayleigh quotient close to λ2 and by Lemma 7.2.1

this would upper bound λ3 by 2 max{R(f1),R(f2),R(f3)}. For the cycle example, if f is the

cosine function, we may construct f1, f2, f3 simply by first dividing the support of f into three

disjoint intervals and then constructing each fi by defining a smooth localization of f (similar to

Lemma 10.2.1) in one of those intervals. To ensure that max{R(f1),R(f2),R(f3)} ≈ λ2 we need to

show that f is a “smooth” function, whose values change continuously. We make this rigorous by

showing that if λ2 ≈ φ(G)2, then the function f must be smooth. Therefore, we can construct three

disjointly supported functions based on f and show that λ2 ≈ λ3.

In [KLL+13] we present two proofs of Theorem 11.1.1 where the first proof generalizes the

first observation. In this thesis we only include the proof based on the second observation. Say

R(f) ≈ φ(G)2. We partition the support of f into disjoint intervals of the form [2−i, 2−(i+1)], and

we show that the vertices are distributed almost uniformly in most of these intervals in the sense

that if we divide [2−i, 2−(i+1)] into Θ(k) equal length subintervals, then we expect to see the same

amount of mass in the subintervals. This shows that f is a smooth function. We then argue that

λk . k2λ2, by constructing k disjointly supported functions, f1, . . . , fk, each of Rayleigh quotient
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O(k2)R(f).

To construct f1, . . . , fk we use the machinery that we developed in Section 10.2. We use the

smoothness of f to find k well separated regions each covering Ωk(1) fraction of the mass of f .

Then, we use Lemma 10.2.1 to localize these regions and construct f1, . . . , fk. The main difference

with the proofs in Chapter 10 is that we use a different metric, normalized euclidean metric.

11.2 Proof of the Main Result

Throughout this section we assume that f ∈ `2(V,w) is a non-negative function of norm ‖f‖2w =

1 such that vol(supp(f)) ≤ vol(V )/2. Such a function can be obtained using Lemma 7.2.2 (or

Lemma 7.2.3 if we are given an eigenfunction of L). Recall that for a threshold t ∈ R, a threshold

set of f is defined as Sf (t) := {v : f(v) ≥ t}. We let

φ(f) := min
t>0

φ(Sf (t)).

be the conductance of the best threshold set of the function f .

Instead of directly proving Theorem 11.1.1 we prove a stronger version, as it will be used later

to prove Corollary 11.1.3. In particular, instead of directly upper bounding λk, we construct k

disjointly supported functions with small Rayleigh quotients.

Theorem 11.2.1. For any non-negative function f ∈ `2(V,w) such that vol(supp(f)) ≤ vol(V )/2,

at least one of the following holds

i) φ(f) ≤ O(k)R(f);

ii) There exist k disjointly supported functions f1, f2, . . . , fk such that for all 1 ≤ i ≤ k, supp(fi) ⊆
supp(f) and

R(fi) ≤ O(k2)R(f)/δ.

where and δ � φ2(f)/R(f). Furthermore, the support of each fi is an interval [ai, bi] such that

|ai − bi| = Θ(1/k)ai.

Observe that Theorem 11.1.1 can be obtained from above theorem and an application of Lemma 7.2.1.

We will show that if R(f) = Θ(φ(G)2) (i.e., δ = Θ(1)), then f is a smooth function of the vertices, in

the sense that in any interval of the form [t, 2t] we expect the vertices to be embedded in equidistance

positions. It is instructive to verify this for the second eigenvector of the cycle.
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11.2.1 Normalized Euclidean Distance Function

In this section we introduce the normalized euclidean distance function d�(., .). For a function

F : V → R, and u, v ∈ V ,

d�F (u, v) =
‖F (u)− F (v)‖

max{‖F (u)‖, ‖F (v)‖}
.

if max{‖F (u)‖ , ‖F (v)‖} > 0, and d�F (u, v) = 0 otherwise. In the next lemma we show that d�F (., .)

indeed defines a metric.

Lemma 11.2.2. For any F : V → Rl, and v1, v2, v3 ∈ V and f : V → R,

d�F (v, u) ≤ d�F (v, v′) + d�F (u, v′).

Proof. If max{‖F (v)‖, ‖F (u)‖} = max{‖F (v)‖, ‖F (u)‖, ‖F (v′)‖}, then

max{‖F (v)‖ , ‖F (u)‖}·(d�F (v, v′)+d�F (u, v′)) ≥ ‖F (v)− F (v′)‖+‖F (u)− F (v′)‖ ≥ ‖F (v)− F (u)‖ ,

and we are done. Otherwise, it must be that ‖F (v′)‖ = max{‖F (v)‖, ‖F (u)‖, ‖F (v′)‖}.
The rest of the proof is based on a proof by S.B. in math.stackexchange.com. Without loss of

generality assume that F (v), F (u) 6= 0. For a vertex v ∈ V , let Γ(v) = F (v)/ ‖F (v)‖2. First observe

that for any u, v ∈ V ,

‖Γ(u)− Γ(v)‖ =
‖F (u)− F (v)‖
‖F (v)‖ · ‖F (v)‖

. (11.2.1)

This is because,

‖Γ(u)− Γ(v)‖2 =
1

‖F (u)‖2
+

1

‖F (v)‖2
− 〈F (u), F (v)〉
‖F (u)‖ · ‖F (v)‖

=
‖F (u)− F (v)‖2

‖F (u)‖2 · ‖F (v)‖2

Therefore,

max{‖F (v)‖ , ‖F (u)‖} · (‖F (v)− F (v′)‖+ ‖F (u)− F (v′)‖)

≥ ‖F (v)− F (v′)‖ · ‖F (u)‖+ ‖F (u)− F (v′)‖ · ‖F (v)‖

= ‖F (u)‖ · ‖F (v)‖ · ‖F (v′)‖ · (‖Γ(v)− Γ(v′)‖+ ‖Γ(u)− Γ(v′)‖)

≥ ‖F (u)‖ · ‖F (v)‖ · ‖F (v′)‖ · ‖Γ(v)− Γ(u)‖

= ‖F (v′)‖ · ‖F (u)− F (v)‖ .

where the second equation follows by (11.2.1) and the third equation follows by the triangle inequal-

ity.

math.stackexchange.com
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Fact 11.2.3. For any F : V → Rl, and u, v ∈ V ,

‖F (u)‖ · d�F (u, v)| ≤ ‖F (u)− F (v)‖ .

Our overall idea to construct f1, . . . , fk is very similar to what we did in Section 10.2. We find

well-separated regions with respect to f such that each of them contains Ωk(1) fraction of the total

mass.

The following corollary follows from Lemma 10.2.2, Fact 11.2.3, and that Mf (V ) = ‖f‖w = 1.

Corollary 11.2.4. Let S1, S2, . . . , S2k ⊆ V such that Mf (Si) ≥ α and d�f (Si, Sj) ≥ 2ε for all

1 ≤ i ≤ j ≤ 2k. Then, there are k disjointly supported functions f1, . . . , fk, each supported on the

ε-neighborhood of one of the regions such that

∀ 1 ≤ i ≤ k, R(fi) ≤
2R(f)

k · α
(1 + 1/ε)2.

11.2.2 Construction of Dense Well Separated Regions

For t1, t2 ∈ R, we define the interval [t1, t2],

[t1, t2] := {x ∈ R : min{t1, t2} < x ≤ max{t1, t2}}.

In this chapter all intervals are defined to be closed on the larger value and open on the smaller

value. For an interval I = [t1, t2] ⊆ R, we use len(I) := |t1 − t2| to denote the length of I. For a

function f ∈ RV , we abuse the notation and use If := {v : f(v) ∈ I} to denote the vertices within

I.

Let 0 < α < 1 be a constant that will be fixed later in the proof. For i ∈ Z, we define the interval

I(i) := [αi, αi+1]. Observe that these intervals partition the vertices with positive value in f . We

partition each interval Ii into 12k subintervals of equal length,

I(i, j) :=

[
αi
(

1− j(1− α)

12k

)
, αi

(
1− (j + 1)(1− α)

12k

)]
,

for 0 ≤ j < 12k. Observe that for all i, j,

len(I(i, j)) =
αi(1− α)

12k
. (11.2.2)

We say a subinterval I(i, j) is heavy, if

M(If (i, j)) ≥ δ · M(If (i− 1))

k
,

where c > 0 is a constant that will be fixed later in the proof; we say it is light otherwise. We also say



www.manaraa.com

CHAPTER 11. IMPROVED CHEEGER’S INEQUALITY 252

an interval I(i) is balanced if the number of heavy sub-intervals is at least 6k. We use B to denote

the set of balanced intervals. Intuitively, an interval I(i) is balanced if the vertices are distributed

uniformly inside that interval.

Next we describe our proof strategy. Using Corollary 11.2.4 to prove the theorem it is sufficient

to find 2k sets each covering Ω(δ/k) mass of f such that their distance is Ω(1/k). Each of our 2k

sets will be a union of vertices in heavy subintervals. Our construction is simple: from each balanced

interval we choose 2k separated heavy subintervals and include each of them in one of the sets. In

order to promise that the sets are well separated, once we include a heavy subinterval, say If (i, j),

in a set S we leave the two neighboring subintervals I(i, j − 1) and I(i, j + 1) unassigned, so as to

separate S from the rest of the sets. In particular, for all 1 ≤ a ≤ 2k and all I(i) ∈ B, we include the

(3a− 1)-th heavy subinterval of I(i) in Sa. Note that if an interval I(i) is balanced, then it has 6k

heavy subintervals and we can include one heavy subinterval in each of the 2k sets. Consequently,

for 1 ≤ a < b ≤ 2k,

d�f (Sa, Sb) ≥ max
i∈Z

max
0≤j<12k

len(I(i, j))

α2
=

(1− α)

12k
.

where the last equality follows by equation (11.2.2), It remains to prove that these 2k regions are

dense. Let

∆ :=
∑
I(i)∈B

M(I(i− 1))

be the summation of the mass of the preceding interval of balanced intervals. Then, since each

heavy subinterval I(i, j) has a mass of δ · M(I(i− 1))/k, by the above construction all regions are

δ ·∆/k-dense. Hence, the following proposition follows from Corollary 11.2.4.

Proposition 11.2.5. There are k disjoint supported functions f1, . . . , fk such that for all 1 ≤ i ≤ k,

supp(fi) ⊆ supp(f) and

∀ 1 ≤ i ≤ k, R(fi) ≤
1250k2R(f)

(1− α)2 · δ ·∆
.

11.2.3 Lower Bounding the Energy

Our approach to lower bound ∆ is by lower bounding the energy of edges inside each light subinterval.

Then, we use this to upper bound M(I(i− 1)) for when I(i) is not balanced.

We define the energy of f restricted to an interval I as follows:

Ef (I) :=
∑

{u,v}∈E

w(u, v) · len(I ∩ [f(u), f(v)])2.

When the function f is clear from the context we drop the subscripts from the above definitions.

The next fact shows that by restricting the energy of f to disjoint intervals we may only decrease

the energy.
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Fact 11.2.6. For any set of disjoint intervals I1, . . . , Im, we have

Ef ≥
m∑
i=1

Ef (Ii).

Proof.

Ef =
∑
u∼v

w(u, v)|f(u)− f(v)|2 ≥
∑
u∼v

m∑
i=1

w(u, v) len(Ii ∩ [f(u), f(v)])2 =

m∑
i=1

Ef (Ii).

Proposition 11.2.7. If I(i) is not balanced, then

Ef (Ii) ≥
α6 · (1− α)2 · φ(f)2 · Mf (I(i− 1))

24(α4 · k · φ(f) + δ)
.

The following is the key lemma is an extension of Lemma 8.1.10 allows us to lower bound the

energy of a function f as a function of φ(f). It shows that a long interval with small volume must

have a significant contribution to the energy of f .

Lemma 11.2.8. For any subinterval I = I(i, j),

Ef (I) ≥ φ(f)2 · vol(I(i− 1))2 · len(I)2

φ(f) · vol(I(i− 1)) + vol(I)

Proof. By the definition of φ(f), for any t ∈ I. the total weight of the edges going out of any

threshold set Sf (t) is at least φ(f) · vol(I(i− 1)). Therefore, by summing over these threshold sets,

we have ∑
{u,v}∈E

w(u, v) len(I ∩ [f(u), f(v)]) ≥ len(I) · φ(f) · vol(I(i− 1)).

Let E1 := {{u, v} : len(I ∩ [f(u), f(v)]) > 0} be the set of edges with nonempty intersection with

the interval I. Let β ∈ (0, 1) be a parameter to be fixed later. Let E2 ⊆ E1 be the set of edges of

E1 that are not adjacent to any of the vertices in I. If w(E2) ≥ βw(E1), then

Ef (I) ≥ w(E2) · len(I)2 ≥ β · w(E1) · len(I)2 ≥ β · φ(f) · vol(I(i− 1)) · len(I)2.

Otherwise, vol(I) ≥ (1 − β)w(E1). Therefore, by a variant of Cauchy Schwarz inequality in
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Fact 11.2.9, we have

Ef (I) =
∑

{u,v}∈E1

w(u, v)(len(I ∩ [f(u), f(v)]))2 ≥
(∑

{u,v}∈E1
w(u, v) len(I ∩ [f(u), f(v)])

)2
w(E1)

≥ (1− β) len(I)2 · φ(f)2 · vol(I(i− 1))2

vol(I)
.

Choosing β = (φ(f) · vol(I(i− 1)))/(φ(f) · vol(I(i− 1)) + vol(I)) such that the above two terms are

equal gives the lemma.

Fact 11.2.9 (A variant of Cauchy-Schwarz inequality). For any a1, . . . , am, b1, . . . , bm ≥ 0,

m∑
i=1

a2
i

bi
≥

(
∑m
i=1 ai)

2∑m
i=1 bi

.

We note that above lemma can be used to give a new proof of Cheeger’s inequality with a weaker

constant. Using the above lemma we can lower bound the energy of a light subinterval I(i, j) in

terms of M(I(i− 1)).

Corollary 11.2.10. For any light subinterval I = Ii,j,

Ef (I) ≥ α6 · (1− α)2 · φ(f)2 · Mf (I(i− 1))

144k · (α4 · k · φ(f) + δ)
.

Proof. First, observe that

vol(I) ≤
∑
v∈I

w(v)
f2(v)

α2i+2
=
Mf (I)

α2i+2
≤ δ · Mf (I(i− 1))

k · α2i+2
≤ δ · vol(I(i− 1))

k · α4
, (11.2.3)

where we use the assumption that I is a light subinterval in the second last inequality, and that

f(v) ≤ α2i−2 for v ∈ I(i− 1) in the last inequality. By Lemma 11.2.8,

Ef (I) ≥ φ(f)2 · vol(I(i− 1))2 · len(I)2

φ(f) · vol(I(i− 1)) + vol(I)
≥ kα4φ(f)2 · vol(I(i− 1)) · len(I)2

k · α4φ(f) + δ

≥
α6 · (1− α)2 · φ(f)2 · M(I(i− 1))

144k · (α4 · k · φ(f) + δ)
,

where the first inequality holds by equation (11.2.3), and the last inequality holds by equation (11.2.2).

Above corollary directly implies Proposition 11.2.7. If I(i) is not balanced it has at least 6k light

interval. Since the subintervals of I(i) are disjoint by Fact 11.2.6, Proposition 11.2.7 follows from

above corollary.
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11.2.4 Improved Cheeger’s Inequality

Now we are ready to prove Theorem 11.2.1.

Proof of Theorem 11.2.1. First we show that ∆ ≥ 1/2, unless (i) holds, and then we use Propo-

sition 11.2.5 to prove the theorem. If φ(f) ≤
√

109 · k · R(f), then (i) holds and we are done. So,

assume that
109 · k2 · R2(f)

φ2(f)
≤ 1, (11.2.4)

and we prove (ii). Since ‖f‖2w = 1, by Proposition 11.2.7,

R(f) = Ef ≥
∑
Ii /∈B

E(I(i)) ≥
∑
I(i)/∈B

α6 · (1− α)2 · φ(f)2 · M(I(i− 1))

24(α4 · k · φ(f) + δ)
.

Set α = 1/2 and δ = α6(1−α)2·φ2(f)
96·R(f) . If α4 · k · φ(f) ≥ δ, then we get

∑
I(i)/∈B

M(I(i− 1)) ≤ 48 · k · R(f)

α2 · (1− α)2 · φ(f)
≤ 1

2
,

where the last inequality follows from (11.2.4). Otherwise,

∑
I(i)/∈B

M(I(i− 1)) ≤ 48δ · R(f)

α6 · (1− α)2 · φ2(f)
≤ 1

2
,

where the last inequality follows from the definition of c and δ. Since M(V ) = ‖f‖2w = 1, it follows

from the above equations that ∆ ≥ 1
2 . Therefore, by Proposition 11.2.5, we get k disjointly supported

functions f1, . . . , fk such that

R(fi) ≤
1250 · k2 · R(f)

(1− α)2 · δ ·∆
≤ 109 · k2 · R(f)2

φ(f)2
.

Although each function fi is defined on a region which is a union of many heavy subintervals, we can

simply restrict it to only one of those subintervals guaranteeing that R(fi) only decreases. Therefore

each fi is defined on an interval [ai, bi] where by (11.2.2), |ai− bi| = Θ(1/k)ai. This proves (ii).

We remark that the constant in the above argument can be significantly improved using very

different proof techniques (see [KLL+13] for more details).

11.3 Extensions and Connections

In this section, we extend our technique to other graph partitioning problems, including multiway

partitioning (Subsection 11.3.1), balanced separator (Subsection 11.3.2). We also remark that our
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techniques can be applied to maximum cut, and to the Remanian manifolds to obtain improved

quantitate bounds (we refer the interested readers [KLL+13]).

11.3.1 Spectral Multiway Partitioning

In this subsection, we use Theorem 11.1.1 and results in Chapter 10 to prove Corollary 11.1.3.

We start by part (i). First of all, by Theorem 10.1.5, there are k non-negative disjointly supported

functions f1, . . . , fk : V → R such that for each 1 ≤ i ≤ k we have R(fi) ≤ O(k6)λk. Let Sfi(topt)

be the best threshold set of fi. We consider two cases.

vol(supp(fi)) ≤ vol(V )/2 for all 1 ≤ i ≤ k: Let Si := Sfi(topt). Then, for each function fi, by

Theorem 11.2.1,

φ(Si) = φ(fi) ≤ O(l)
R(fi)√
λl
≤ O(lk6)

λk√
λl
.

Furthermore, since Si ⊆ supp(fi) and f1, . . . , fk are disjointly supported, S1, . . . , Sk are dis-

joint. Hence,

ρ(k) = max
1≤i≤k

φ(Si) ≤ O(lk6)
λk√
λl
,

and we are done.

There exists a function, say fk, with vol(supp(fk)) > vol(V )/2: Let Si = Sfi(topt) for 1 ≤ i ≤
k− 1, and Sk := V − S1 − . . .− Sk−1. Similar to the above, the sets S1, . . . , Sk−1 are disjoint,

and φ(Si) ≤ O(lk6λk/
√
λl) for all 1 ≤ i ≤ k − 1. Observe that

φ(Sk) =
w(S1, Sk) + . . .+ w(Sk−1, Sk)

vol(V )− vol(Sk)
≤
∑k−1
i=1 w(E(Si, Si))∑k−1

i=1 vol(Si)
≤ O(lk6)

λk√
λl
,

where the first equality uses vol(Sk) ≥ vol(V )/2. Hence, ρ(k) ≤ O(lk6)λk/
√
λl.

This completes the proof of (i) of Corollary 11.1.3.

To prove (ii) we use Theorem 10.2.6. It follows from (i) that without loss of generality we can

assume that δ > 10/k. Let δ′ := δ/2. Then, by Theorem 10.2.6, there exist r ≥ (1−δ′)k non-negative

disjointly supported functions f1, . . . , fr such that R(fi) ≤ O(δ−9 log2 k)λk and vol(supp(fi)) ≤
vol(V )/2. For each 1 ≤ i ≤ r, let Si := Sfi(topt). Similar to the argument in part (i), since

Si ⊆ supp(fi), the sets S1, . . . , Sr are disjoint. Without loss of generality assume that φ(S1) ≤
φ(S2) ≤ . . . φ(Sr). Since S1, . . . , S(1−δ)k are disjoint,

ρ((1− δ)k) ≤ φ(S(1−δ)k+1) ≤ . . . ≤ φ(Sr). (11.3.1)
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Let m := l/(δ′k) = 2l/(δk). If φ(fi) ≤ O(m)R(fi) for some (1− δ)k < i ≤ r, then we get

ρ((1− δ)k) ≤ φ(Si) = φ(fi) ≤ O(m)R(fi) ≤ O
(
l log2 k

δ9k

)
λk,

and we are done. Otherwise, by Theorem 11.2.1, for each (1− δ)k < i ≤ r, there exist m disjointly

supported functions hi,1, . . . hi,m such that for all 1 ≤ j ≤ m, supp(hi,j) ⊆ supp(fi) and

R(hi,j) ≤ O(m2)
R(fi)

2

φ(fi)2
≤ O

(
l2

δ2k2

)
O(δ−18 log4 k)λ2

k

ρ2((1− δ)k)
= O

(
l2 log4 k

δ20k2

)
λ2
k

ρ2((1− δ)k)
(11.3.2)

where the second inequality follows from (11.3.1). Since f(1−δ)k+1, . . . , fr are disjointly supported,

all functions hi,j are disjointly supported as well. Therefore, since l = m(δ′k) ≤ m(r− (1− δ)k), by

Lemma 7.2.1,

λl ≤ 2 max
(1−δ)k<i≤r

1≤j≤m

R(hi,j) ≤ O
(
l2 log4 k

δ20k2

)
λ2
k

ρ2((1− δ)k)
,

where the second inequality follows from (11.3.2). This completes the proof of (ii) of Corollary 11.1.3.

Part (iii) can be proved in a very similar way to part (ii) using Theorem 10.2.5 We follow the

same proof steps as in part (ii) except that we upper bound R(fi) by O(h4δ−4)λk. This completes

the proof of Corollary 11.1.3.

In the remaining part of this section we describe some examples.

Example 11.3.1. First we show that there exists a graph where ρ(k) ≥ Ω(l− k+ 1)λk/
√
λl. Let G

be a union of k − 2 isolated vertices and a cycle of length n. Then, ρ(k) = Θ(1/n), λk = Θ(1/n2)

and for l > k, λl = Θ((l − k + 1)2/n2). Therefore,

ρ(k) ≥ Ω(l − k + 1)
λk√
λl

This shows that for l� k, the dependency on l in the right hand side of part (i) of Corollary 11.1.3

is necessary.

Example 11.3.2. In the second example we show that there exists a graph where ρ(k/2) ≥ Ω(l/k)λk/
√
λl.

Let G be a cycle of length n. Then, ρ(k/2) = Θ(k/n), λk = Θ(k2/n2) and λl = Θ(l2/n2). Therefore,

ρ(k/2) ≥ Ω(l/k)
λk√
λl
.

This shows that part (iii) of Corollary 11.1.3 is tight (up to constant factors).
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11.3.2 Balanced Separator

In this section we give a simple polynomial time algorithm with approximation factor O(k/λk) for

the balanced separator problem.

We will prove Theorem 11.1.4 by repeated applications of Theorem 11.2.1. Our algorithm is

similar to the standard algorithm for finding a balanced separator by applying Cheeger’s inequality

repeatedly. We inductively remove a subset of vertices of the remaining graph such that the union

of the removed vertices is a non-expanding set in G, until the set of removed vertices has at least

a quarter of the total volume. Besides that, there is an additional step that removes a subset of

vertices such that the conductance of the union of the removed vertices does not increase. The

details are described in Algorithm 13.

Algorithm 13 A Spectral Algorithm for Balanced Separator

U ← V .
while vol(U) > 4

5vol(V ) do
Let H = (U,E(U)) be the induced subgraph of G on U , and λ′2 be the second smallest

eigenvalue of LH .
Let f ∈ `2(U,w) be a non-negative function such that vol(supp(f)) ≤ vol(H)/2, and RH(f) ≤

λ′2.
if φH(f) ≤ O(k)RH(f)/

√
λk then

U ← U − Uf (topt).
else

Let f1, . . . , fk be k disjointly supported functions such that supp(fi) ⊆ supp(f) and

φH(f) ≤ O(k)
RH(f)√

max1≤i≤kRH(fi)
,

as defined in Theorem 11.2.1.
Find a threshold set S = Sfi(t) for 1 ≤ i ≤ k, and t > 0 such that

w(S,U − S) ≤ w(S, V − U).

U ← U − S.
end if

end while
return U .

Let U be the set of vertices remained after a number of steps of the induction, where initially

U = V . We will maintain the invariant that φG(U) ≤ O(kε/λk). Suppose vol(U) > 4
5vol(V ). Let

H = (U,E(U)) be the induced subgraph of G on U , and 0 = λ′1 ≤ λ′2 ≤ . . . be the eigenvalues of

LH . First, observe that λ′2 = O(ε) as the following lemma shows.

Lemma 11.3.3. For any set U ⊆ V with vol(U) ≥ 4
5vol(V ), let H(U,E(U)) be the induced subgraph

of G on U . Then the second smallest eigenvalue λ′2 of LH is at most 10ε.

Proof. Let (T, T ) be the optimum bisection, and let T ′ := U ∩ T . Since vol(U) ≥ 4
5vol(V ), and
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vol(T ) = vol(V )/2, we have

volH(T ′) ≥ volG(T )− 2volG(U) ≥ vol(V )/2− 2vol(V )/5 = vol(V )/10 = vol(T )/5.

Furthermore, since E(T ′, U − T ′) ⊆ E(T, T ), we have

φH(T ′) =
w(T ′, U − T ′)

volH(T ′)
≤ w(T, T )

volG(T )/5
≤ 5φ(T ) = 5ε.

Therefore, by Claim 7.8.2, we have λ′2 ≤ 10ε.

To prove Theorem 11.1.4, it is sufficient to find a set S ⊆ U with volH(S) ≤ 1
2volH(U) and

conductance φH(S) ≤ O(kλ′2/λk) = O(kε/λk), because

φG(U ∪ S) ≤ w(U,U) + w(S, S)

volG(U) + volH(S)
≤ max(φG(U), φH(S))) ≤ O(kε/λk),

and so we can recurse until 1
5vol(V ) ≤ vol(U ∪ S) ≤ 4

5vol(V ). Let f ∈ `2(U,w) be a non-negative

function such that volH(supp(f)) ≤ 1
2volH(U) and RH(f) ≤ λ′2, as defined in Lemma 7.2.3. If

φH(f) ≤ O(kλ′2/λk), then we are done by induction. Otherwise, we will find a set S such that

volH(S) ≤ 1
2volH(U) and w(E(S,U −S)) ≤ w(E(S,U)). This implies that we can simply remove S

from U without increasing the conductance of the union of the removed vertices, i.e., φG(S ∪ U) ≤
φG(U). This is because the numerator (total weight of the cut edges) does not increase while the

denominator (volume of the set) may only increase.

It remains to find a set S with either of the above properties. We can assume that φH(f) �
O(k)RH(f) as otherwise we are done. By Theorem 11.2.1, there are k disjointly supported functions

f1, . . . , fk ∈ `2(U,w) such that supp(fi) ⊆ supp(f) and

φH(f) ≤ O(k)
λ′2√

maxRH(fi)
.

We extend fi ∈ `2(U,w) to fi ∈ `2(V,w) by defining fi(v) = 0 for v ∈ V − U . We will prove that

either φH(f) ≤ O(kλ′2/λk), or there is a threshold set S = Sfi(t) for some 1 ≤ i ≤ k and t > 0 such

that w(S,U − S) ≤ w(S,U). As f1, . . . , fk can be computed in polynomial time, this will complete

the proof of Theorem 11.1.4.

Suppose that for every fi and any threshold set S = Sfi(t) we have w(S,U) ≤ w(S,U − S).

Then, by Lemma 11.3.4 that we will prove below, RH(fi) ≥ Ω(R2
G(fi)) for every 1 ≤ i ≤ k. This

implies that

φH(f) ≤ O(k)
λ′2√

max1≤i≤kRH(fi)
≤ O(k)

λ′2√
max1≤i≤kR2

G(fi)
≤ O(k)

λ′2
λk
,
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where the last inequality follows by Lemma 7.2.1 and the fact that f1, . . . , fk are disjointly supported.

Lemma 11.3.4. For any set U ⊆ V , let H(U,E(U)) be the induced subgraph of G on U , and

f ∈ `2(V,w) be a non-negative function such that f(v) = 0 for any v ∈ V −U . Suppose that for any

threshold set Sf (t), we have

w(Sf (t), U) ≤ w(Sf (t), U − Sf (t)),

then √
8RH(f) ≥ RG(f).

Proof. Without loss of generality we assume w(v) ≥ 1 for all v ∈ V . Since both sides of the

inequality are homogeneous in f , we may assume that maxv f(v) ≤ 1. Furthermore, we can assume

that
∑
v w(v)f2(v) = 1. Observe that, since wH(v) ≤ wG(v) for all v ∈ U ,

∑
v∈U

wH(v)f2(v) ≤
∑
v∈U

wG(v)f2(v) =
∑
v

wG(v)f2(v) = 1. (11.3.3)

Since f(v) = 0 for any v ∈ U , Sf (t) ⊆ U for any t > 0. Therefore, by Lemma 7.8.3,

E
[
w(Sf (

√
t), U − Sf (

√
t))
]
≤
√

2RH(f). (11.3.4)

where we used the fact that ‖f‖w = 1.

On the other hand, since w(Sf (t), U) ≤ w(Sf (t), U − Sf (t)) for any t,

E
[
w(Sf (

√
t), U − Sf (

√
t))
]
≥ 1

2
E
[
w(Sf (

√
t), V − Sf (

√
t))
]

=
1

2

∑
{u,v}∈E

w(u, v)|f2(u)− f2(v)|

≥ 1

2

∑
{u,v}∈E

w(u, v)|f(u)− f(v)|2 =
1

2
RG(f). (11.3.5)

where the last inequality follows by the fact that f(v) ≥ 0 for all v ∈ V , and the last equality

follows by the normalization
∑
v w(v)f2(v) = 1. Putting together (11.3.4) and (11.3.5) proves the

lemma.
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Chapter 12

Almost Optimal Local Graph

Clustering

In this chapter we provide a local variant of the Spectral Partitioning algorithm (Algorithm 10). We

design an algorithm with the same guarantee (up to a constant factor) as the Cheeger’s inequality,

that runs in time slightly super linear in the size of the output. This is the first sublinear (in the

size of the input) time algorithm with almost the same guarantee as the Cheeger’s inequality. As a

byproduct of our results, we prove a bicriteria approximation algorithm for the conductance profile

of any graph. Let φ(k) be the conductance profile of a graph as defined in equation (7.7.1). There

is a polynomial time algorithm that, for any k, ε > 0, finds a set S of volume vol(S) ≤ O(k1+ε),

and conductance φ(S) ≤ O(
√
φ(k)/ε). Our proof techniques also provide a simpler proof of the

structural result of Arora, Barak, Steurer [ABS10], that can be applied to irregular graphs.

The results of this chapter are based on a joint work with Luca Trevisan [OT12].

12.1 Introduction

Often, one is interested in applying a sparsest cut approximation algorithm iteratively, that is, first

find an approximate sparsest cut in the graph, and then recurse on one or both of the subgraphs

induced by the set found by the algorithm and by its complement. Such iteration might be used

to find a balanced sparse cut if one exists (c.f. [OSV12]), or to find a good clustering of the graph,

an approach that lead to approximate clusterings with good worst-case guarantees, as shown by

Kannan, Vempala and Vetta [KVV04]. Even though each application of the spectral partitioning

algorithm runs in nearly linear time, iterated applications of the algorithm can result in a quadratic

running time.

Spielman and Teng [ST04], and subsequently [ACL06, AP09] studied local graph partitioning

261
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algorithms that find a set S of approximately minimal conductance in time nearly linear in the size

of the output set S. Note that the running time can be sub linear in the size of the input graph if

the algorithm finds a small output set S. When iterated, such an algorithm finds a balanced sparse

cut in nearly linear time in the size of the graph, and can be used to find a good clustering in nearly

linear time as well.

Another advantage of such “local” algorithms is that if there are both large and small sets of near-

optimal conductance, the algorithm is more likely to find the smaller sets. Thus, such algorithms

can be used to approximate the small set expansion problem and the unique games conjecture

(see Subsection 7.7.3 for background). Finding small, low-conductance, sets is also interesting in

clustering applications. In a social network, for example, a low-conductance set of users in the

“friendship” graph represents a “community” of users who are significantly more likely to be friends

with other members of the community than with non-members, and discovering such communities

has several applications. While large communities might correspond to large-scale, known, factors,

such as the fact that American users are more likely to have other Americans as friends, or that

people are more likely to have friends around their age, small communities generally contain more

interesting and substantial information. Leskovec et al. [LLDM09, LLM10] observed that in large

networks the sets which mostly resemble communities are of size around only 100, while larger

communities gradually “blend into” the expander-like core of the network and thus become less

“community-like”. There is also an experimental evidence that a significant fraction of vertices in

networks belong to small communities [LPP11, LP11].

12.1.1 Almost Optimal Local Graph Clustering

A local graph clustering algorithm, is a local graph algorithm that finds a non-expanding set in

the local neighborhood of a given vertex v, in time proportional to the size of the output set. The

work/volume ratio of such an algorithm, which is the ratio of the computational time of the algorithm

in a single run, and the volume of the output set, may depend only poly logarithmically to the size

of the graph.

The problem first studied in the remarkable work of Spielman and Teng [ST04]. Spielman and

Teng design an algorithm Nibble such that for any set A ⊆ V , if the initial vertex, v, is sampled

randomly according to the degree of vertices in A, with a constant probability, Nibble finds a set of

conductance O(φ1/2(A) log3/2 n), with a work/volume ratio of O(φ−2(A) polylog(n)), Nibble finds

the desired set by looking at the threshold sets of the probability distribution of a t-step random walk

started at v. To achieve the desired computational time they keep the support of the probability

distribution small by removing a small portion of the probability mass at each step.

Andersen, Chung and Lang [ACL06], used the approximate PageRank vector rather than approx-

imate random walk distribution, and they managed to improve the conductance of the output set to

O(
√
φ(A) log n), and the work/volume ratio to O(φ−1(A) polylog n). More recently, Andersen and
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Peres [AP09], use the volume biased evolving set process developed in [DF90, MP03], and improved

the work/volume ratio to O(φ−1/2(A) polylog n), while achieving the same guarantee as [ACL06] on

the conductance of the output set.

It has been a long standing open problem to design a local variant of the Cheeger’s inequalities:

that is to provide a sublinear time algorithm with an approximation guarantee that does not depend

on the size of G, assuming that the size of the optimum set is sufficiently smaller than n, and a

randomly chosen vertex of the optimum set is given. In this work we answer this question, and we

prove the following theorem:

Theorem 12.1.1. ParESP(v, k, φ, ε) takes as input a starting vetex v ∈ V , a target conductance

φ ∈ (0, 1), a target size k, and 0 < ε < 1, and outputs a set of vertices. For a given run of the

algorithm let S be the output and let W be the computational complexity of the algorithm. Then,

both S and W depend on the randomness of the algorithm.

1. The work per volume ratio W/vol(S) satisfies,

E [W/vol(S)] = O(kεφ−1/2 log2 n).

2. If A ⊆ V is a set of vertices that satisfy φ(A) ≤ φ, and vol(A) ≤ k, then there is a subset

A′ ⊆ A with volume at least vol(A)/2, such that if v ∈ A′, then with a constant probability S

satisfies,

a) φ(S) = O(
√
φ/ε),

b) vol(S) = O(k1+ε).

We remark that unlike the previous local graph clustering algorithms, the running time of the

algorithm is slightly super linear in the size of the optimum. Nonetheless, by choosing ε = Θ(1/ log k),

one can reproduce the best previous local graph clustering algorithm of Andersen, Peres [AP09].

12.1.2 Approximating the Conductance Profile

As a byproduct of the above result we give an approximation algorithm for the conductance profile

of G (see Subsection 7.7.3 for background on conductance profile and small set expansion problem).

We prove k independent approximation of φ(k) as a function of φ(k1−ε), without any dependency

in the size of the graph; specifically, we prove the following corollary:

Corollary 12.1.2. There is a polynomial time algorithm that takes as input a target conductance φ,

and 0 < ε < 1, and outputs a set S, s.t. if φ(A) ≤ φ, for some A ⊆ V , then vol(S) = O(vol(A)1+ε),

and φ(S) = O(
√
φ/ε).

This is the first approximation algorithm for the small set expansion problems where the con-

ductance of the output is only a function of the optimum conductance, and does not depend on the



www.manaraa.com

CHAPTER 12. ALMOST OPTIMAL LOCAL GRAPH CLUSTERING 264

size of the graph. The approximation factor of the previous algorithms [RST10, BFK+11] depend

poly-logarithmically on n/k.

Our corollary indicates that the hard instance of the small set expansion problem are those where

φ(m1−Ω(1)) ≈ 1, while φ(δm) ≤ φ. In other words, if in an instance of SSE problem φ(m1−Ω(1)) is

bounded away from 1, then using our algorithm we can prove φ(δm) ≤ φ for any constant δ > 0.

Independent of our work, Kwok and Lau [KL12] have obtained a somewhat different proof of

Corollary 12.1.2.

12.1.3 Approximating Balanced Separator

One application of our local partitioning algorithm is a fast algorithm for finding balanced cuts. Spiel-

man and Teng showed how to find a balanced cut in nearly linear time by repeatedly removing small

sets from a graph using local partitioning [ST04]. Applying their technique with our algorithm yields

an algorithm with the following properties. The algorithm has complexity m1+O(ε)φ−1/2 polylog(n),

and it outputs a set of vertices whose conductance is O(
√
φ/ε) and whose volume at least half that

of any set with conductance at most φ and volume at most m1−ε/c, where φ, ε are inputs to the

algorithm and c > 0 is an absolute constant.

Orecchia, Sachdeva and Vishnoi [OSV12] very recently designed almost linear time algorithm

O(m polylog(n)) that gives a
√
φ approximation to the balanced separator problem. Their algorithm

is the current fastest algorithm that provides a nontrivial approximation guarantee for the balanced

cut problem (note that compare to our algorithm, the running time of [OSV12] does not depend on

φ). There are also several algorithms that provide stronger approximation guarantees with a slower

running time (see e.g. Arora et al. [AHK10] and Sherman [She09]). These algorithms produce cuts

with conductance O(φ polylog(n)), and their computational complexity is dominated by the cost of

solving O(no(1)) many single-commodity flow problems.

12.1.4 Techniques

Our main technical result is a new upper bound on escape probability of simple random walks that

we covered in Section 8.3. We showed for S ⊆ V , a t-step lazy random walk started at a random

vertex of S remains entirely in S with probability at least (1− φ(S)/2)t. Previously, only the lower

bound 1 − tφ(S)/2 was known, and the analysis of other local clustering algorithms implicitly or

explicitly depended on such a bound.

For comparison, when t = 1/φ(S), the known bound would imply that the walk has probability at

least 1/2 of being entirely contained in S, with no guarantee being available in the case t = 2/φ(S),

while our bound implies that for t = (ε lnn)/φ the probability of being entirely contained in S is

still at least 1/nε. Roughly speaking, the Ω(log n) factor that we gain in the length of walks that

we can study corresponds to our improvement in the conductance bound, while the 1/nε factor that

we lose in the probability corresponds to the factor that we lose in the size of the output set.
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Our local algorithm uses the volume biased evolving set process. This process starts with a vertex

v of the graph (or possibly any S0 ⊂ V ), and then produces a sequence of sets S1, S2, . . . , Sτ for any

stopping time τ . Anderson and Peres [AP09] show that with constant probability at least one set St

is such that φ(St) .
√

log vol(Sτ )/τ . If one can show that up to some time T the process constructs

sets all of volume at most k, then we get a set of volume at most k and conductance at most

O(
√

log(k)/T ). Andersen and Peres were able to show that if the graph has a set A of conductance

φ, then the process is likely to construct sets all of volume at most 2vol(A) for at least T = Ω(1/φ)

steps, if started from a random element of the set A, leading to their O(
√
φ log n) guarantee. We

show that for any chosen ε < 1/2, the process will construct sets of volume at most O(vol(A)1+ε) for

T & ε · log(vol(A))/φ steps, with probability at least 1/vol(A)ε. This is enough to guarantee that,

at least with probability 1/vol(A)ε, the process constructs at least one set of conductance O(
√
φ/ε).

To obtain this conclusion, we also need to strengthen the first part of the analysis of Andersen and

Peres: we need to show that the process with probability at least 1− 1/vol(A)Ω(1) of constructing a

set with low conductance in the first τ steps, because we need to take a union bound with the event

that t is large, for which probability we only have a vol(A)−Ω(1) lower bound. Finally, to achieve

a constant probability of success, we run vol(A)ε copies of the evolving set process simultaneously,

and stop as soon as one of the copies finds a small non-expanding set.

12.2 Background

12.2.1 Evolving Set Process

The evolving set process (ESP) is a Markov chain on subsets of the vertex set V . Given the current

state S, the next state S1 is chosen by the following rule: pick a threshold Z uniformly at random

from the interval [0, 1], and let

S1 = {u :
∑
v∈S

P (u, v) ≥ Z}. (12.2.1)

Notice that ∅ and V are absorbing states for the process. Given a starting state S0 ⊆ V , we

write PS0
[·] := P [· | S0] to denote the probability measure for the ESP Markov chain started from

S0. Similarly, we write ES0 [·] for the expectation. For a singleton set, we use the shorthand

Pv [·] = P{v} [·]. We define the transition kernel K(S, S′) = PS [S1 = S′].

Morris and Peres [MP03] used the evolving set process to prove upper bounds on the strong

stationary time of markov chains based on the conductance profile. They proved the following

propositions to relate the conductance of a set in the ESP to the change in volume in the next step.

The first proposition strengthens the fact that the sequence (vol(St))t≥0 is a martingale.

Proposition 12.2.1 (Morris and Peres [MP03]). Let Z be the uniform random variable used to
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generate S1 from S in the ESP. Then,

ES

[
vol(S1) | Z ≤ 1

2

]
= vol(S) + ∂(S) = vol(S)(1 + φ(S)).

ES

[
vol(S1) | Z >

1

2

]
= vol(S)− ∂(S) = vol(S)(1− φ(S)).

Proposition 12.2.2 (Morris and Peres [MP03]). The growth gauge ψ(S) of a set S is defined by

the following equation:

1− ψ(S) := ES

[√
vol(S1)

vol(S)

]
.

For any set S ⊆ V , the growth gauge and conductance satisfy ψ(S) ≥ φ(S)2/8.

Proof. Using Proposition 12.2.1, for any set S ⊆ V , we have

ES

[√
vol(S1)

vol(S)

]
=

1

2
ES

[√
vol(S1)

vol(S)
| Z ≤ 1

2

]
+

1

2
ES

[√
vol(S1)

vol(S)
| Z >

1

2

]

≤ 1

2

√
ES

[
vol(S1)

vol(S)
| Z ≤ 1

2

]
+

1

2

√
ES

[
vol(S1)

vol(S)
| Z >

1

2

]
=

1

2

√
1 + φ(S) +

1

2

√
1− φ(S) ≤ 1− φ2(S)/8,

where the first inequality follows by the Jensen’s inequality and the last inequality follows from the

taylor expansion of the square root function.

12.2.2 The Volume-Biased Evolving Set Process

The volume-biased evolving set process (volume-biased ESP) is a Markov chain on subsets of

V with the following transition kernel:

K̂(S, S′) =
vol(S′)

vol(S)
K(S, S′), (12.2.2)

where K(S, S′) is the transition kernel for the ESP. We remark that K̂ is the Doob h-transform of

K with respect to vol (see chapter 17 of [LPW06]), and that the volume-biased ESP is equivalent to

the ESP conditioned to absorb in the state V . Given a starting state S0, we write P̂S0
[·] := P̂ [· | S0]

for the probability measure of the Markov chain. Similarly, we write ÊS0
[·] for the expectation.

The following proposition relates the volume-biased ESP and the ESP. This is a standard con-

sequence of the Doob h-transform, but we include a proof for completeness.
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Proposition 12.2.3. For any function f and any starting set S0 6= ∅,

ÊS0 [f(S0, . . . , Sn)] = ES0

[
vol(Sn)

vol(S0)
f(S0, . . . , Sn)

]
. (12.2.3)

Proof. Assume that S0 6= ∅. Let C be the collection of sample paths (S0, . . . , St) such that

P̂S0 [S1, . . . , St] > 0. If (S0, . . . , St) ∈ C, then vol(Si) > 0 for all i ∈ [0, t], so

P̂S0
[S1, . . . , St] =

t−1∏
i=0

vol(Si+1)

vol(Si)
PSi [Si+1] =

vol(St)

vol(S0)
PS0

[S1, . . . , St] .

Therefore,

ÊS0
[f(S0, . . . , St)] =

∑
(S0,...,St)∈C

f(S0, . . . , St)P̂S0
[S1, . . . , St]

=
∑

(S0,...,St)∈C

f(S0, . . . , St)
vol(St)

vol(S0)
PS0

[S1, . . . , St]

= ES0

[
vol(St)

vol(S0)
f(S0, . . . , St)

]
.

Andersen and Peres used the volume biased ESP as a local graph clustering algorithm [AP09].

They show that for any non-expanding set A, if we run the volume biased ESP from a randomly

chosen vertex of A, with a constant probability, there is a set in the sample path of expansion

O(
√
φ(A) log n), and volume at most 2vol(A). As a part of their proof, they designed an efficient

simulation of the volume biased ESP, called GenerateSample. They prove the following theorem,

Theorem 12.2.4 (Andersen, Peres [AP09, Theorems 3,4]). There is an algorithm, GenerateSample,

that simulates the volume biased ESP such that for any vertex v ∈ V , any sample path (S0 =

{v}, . . . , Sτ ), is generated with probability P̂v [S0, . . . , Sτ ]. Furthermore, for a stopping time τ that

is bounded above by T , let W (τ) be the time complexity of GenerateSample if it is run up to time

τ . Then, the expected work per volume ratio of the algorithm is

Êv

[
W (τ)

vol(Sτ )

]
= O(T 1/2 log3/2 vol(V )).

Here, we do not include the proof of above theorem and we refer the reader to [AP09].

12.2.3 The Diaconis-Fill Coupling

Diaconis-Fill [DF90] introduced the following coupling between the random walk process and the

volume-biased ESP. Let (Xt, St) be a Markov chain, where Xt is a vertex and St ⊆ V is a subset of
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vertices. Let P∗ [·] be the probability measure for the Markov chain. Given a starting vertex v, let

X0 = v and S0 = {v}, and let P∗v [·] = P∗ [· | X0 = v, S0 = {v}]. Given the current state (Xt, St),

the transition probabilities are defined as follows.

P∗ [Xt+1 = v′ | Xt = v, St = S] = P (v, v′),

P∗ [St+1 = S′ | St = S,Xt+1 = v′] =
K(S, S′)I [v′ ∈ S′]

P [v′ ∈ St+1 | St = S]
.

In words, we first select Xt+1 according to the random walk transition kernel, then select St+1

according to the ESP transition kernel restricted to sets that contain Xt+1. We define the transition

kernel K∗((v, S), (v′, S′)) = P∗ [X1 = v′, S1 = S′ | X0 = v, S0 = S].

The following proposition shows that P∗ [·] is a coupling between the random walk process and

the volume-biased ESP, and furthermore the distribution of Xt conditioned on (S0, . . . , St) is the

stationary distribution restricted to St. A proof of Proposition 12.2.5 is given in of [LPW06, Chapter

17].

Proposition 12.2.5 (Diaconis and Fill [DF90]). Let (Xt, St) be a Markov chain started from (v, {v})
with the transition kernel K∗.

1. The sequence (Xt) is a Markov chain started from v with the transition kernel P (., .).

2. The sequence (St) is a Markov chain started from {v} with transition kernel K̂.

3. For any vertex u and time t ≥ 0,

P∗v [Xt = u | S1, . . . , St] = I [u ∈ St]
w(u)

vol(St)
.

12.3 Main Proof

In this section, we show how to find sets with small conductance by generating sample paths from

the volume-biased ESP. The following theorem is the main theorem of this section from which we

will prove Theorem 12.1.1.

Theorem 12.3.1. Let A ⊂ V be a set of vertices of volume vol(A) ≤ k, and conductance φ(A) ≤ φ.

For any ε ∈ (0, 1), fix T = ε log k/3φ. There is a constant c > 0, and a subset A′ ⊆ A of volume

vol(A′) ≥ vol(A)/2 for which the following holds. For any v ∈ A′, with probability at least ck−ε/8, a

sample path (S1, S2, . . . , ST ) of the volume biased ESP started from S0 = {v} satisfies the following,

i) For some 0 ≤ t ≤ T , φ(St) ≤ Φε(φ) , where Φε(φ) :=
√

100(1− log c)φ/ε,

ii) For all 0 ≤ i ≤ T , vol(Si ∩A) ≥ ck−εvol(Si)/2, and henceforth,

iii) For all 0 ≤ i ≤ T , vol(Si) ≤ Kε(k), where Kε(k) := 2k1+ε/c.
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The proof of Theorem 12.3.1 is at the end of this section, after we present two necessary lemmas.

Let (S0, S1, . . . , Sτ ) be a sample path of the volume biased ESP, for a stopping time τ , Andersen

and Peres show that with a constant probability the conductance of at least one of the sets in the

sample path is at most O(
√

1
τ log vol(Sτ )),

Lemma 12.3.2 ([AP09, Corollary 1]). For any starting set S0, and any stopping time τ , and α > 0,

P̂S0

[
τ∑
i=1

φ2(Si) ≤ 4α ln
vol(Sτ )

vol(S0)

]
≥ 1− 1

α
.

Here, we strengthen the above result, and we show the event occurs with significantly higher

probability. In particular, we show the with probability at least 1− 1/α, the conductance of at least

one of the sets in the sample path is at most O(
√

1
τ log(α · vol(Sτ ))).

Lemma 12.3.3. For any starting set S0 ⊆ V and any stopping time , and α > 1,

P̂S0

[
τ∑
i=1

φ2(Si) ≤ 8
(

logα+ log
vol(Sτ )

vol(S0)

)]
≥ 1− 1

α
.

Proof. We use the same martingale argument as in [AP09, Lemma 1], we include the full proof for

the sake of completeness. We define a martingale Mt using the rate of change at each step 1−ψ(St),

and then we use the optional sampling theorem to lower bound the growth in the size of the set at

the stopping time τ . We define

Mt := Ft

√
vol(S0)√
vol(St)

, where Ft :=

t−1∏
j=0

(1− ψ(Sj))
−1, and F0 := 1, (12.3.1)

First, we verify that (Mt) is a martingale in the volume-biased ESP:

Ê
[
Mt

∣∣∣S0, . . . , St−1

]
=

√
vol(S0)FtÊ

[
1√

vol(St)

∣∣∣St−1

]

= Ft

√
vol(S0)√

vol(St−1)
ÊSt−1

[√
vol(St−1)√
vol(St)

]

= Ft

√
vol(S0)√

vol(St−1)
ESt−1

[ √
vol(St)√

vol(St−1)

]

= Ft

√
vol(S0)√

vol(St−1)
(1− ψ(St−1))

= Ft−1

√
vol(S0)√

vol(St−1)
= Mt−1.
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Let τ be a stopping time for the volume-biased ESP. By the optional stopping theorem for nonneg-

ative martingales (see [Wil91]), we have

Ê [Mτ ] ≤M0 = 1.

Then by applying Jensen’s inequality, and Markov’s Inequality to the above equation we have

P̂ [logMτ ≤ logα] ≥ 1− 1

α
(12.3.2)

By the definition of Mτ ,

logMτ = logFτ +
1

2
log

vol(S0)

vol(Sτ )
= log

τ−1∏
i=0

1

1− ψ(Si)
− 1

2
log

vol(Sτ )

vol(S0)

≥
τ−1∑
i=0

ψ(Si)−
1

2
log

vol(Sτ )

vol(S0)

≥ 1

8

τ−1∑
i=0

φ2(Si)−
1

2
log

vol(Sτ )

vol(S0)
,

where the first inequality follows by the fact that 1/(1 − ψ(Si)) ≥ eψ(Si), and the last inequality

follows by Proposition 12.2.2. The lemma follows from putting (12.3.2) and above equation together.

The previous lemma shows that for any k, φ > 0, if we can run the volume biased evolving set

process for T ≈ ε log k/φ steps without observing a set larger than kO(1), then, with probability

1− 1/k, one of the sets in the sample path must have a conductance of O(
√
φ/ε), which is what we

are looking for.

The above lemma is quite strong and it may lead to disproving the SSE conjecture. We conjecture

that if G has a set A of conductance φ, then there is a vertex v ∈ A such that all of the sets in a

sample path of the volume biased ESP started from {v} and ran for T = Ω(log(vol(A))/φ) steps

have size at most O(vol(A)). with probability 1/vol(A)O(1).

Conjecture 12.3.4. There are universal constants ε0 > 0, c > 1 such that for any set A ⊆ V , there

is a vertex v ∈ A such that with probability at least vol(A)−c a sample path S0, S1, . . . , ST of the

volume biased ESP started from {v} satisfies

max
1≤i≤T

vol(Si) ≤ O(vol(A)),

where T = ε0 · log(vol(A))/φ(A).

It is easy to see that the above conjecture combined with Lemma 12.3.3 refutes Conjecture 7.7.2.
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In the rest of this section we use the following lemma of [AP09, Lemma 2] together with Propo-

sition 8.3.1 to prove a weaker version of the above conjecture: we only upper bound the volume of

the sets in a sample path of the ESP process with vol(A)O(1).

Lemma 12.3.5. [AP09, Lemma 2] For any set A ⊆ V , vertex v ∈ A, and integer T ≥ 0, the

following holds for all β > 0,

P̂v

[
max
t≤T

vol(St −A)

vol(St)
> β · esc(v, T,A)

]
<

1

β
.

Proof. We use the Diaconis-Fill coupling, Proposition 12.2.5, between the volume-biased ESP Markov

chain (St) and the random walk Markov chain (Xt). Recall that for any t ≥ 0,

P∗ [Xt = u | S0, . . . , St] =
w(u)

vol(St)
I [u ∈ St] .

Fix a value α ∈ [0, 1] and let τ be the first time t when vol(St − A) > α · vol(St), or let τ = ∞ if

this does not occur. Consider the probability that Xτ 6∈ A, conditioned on Sτ :

P∗ [Xτ 6∈ A | Sτ = S] =
∑

u∈S−A

w(u)

vol(S)
=

vol(S −A)

vol(S)
.

By the definition of τ , we have P∗ [Xτ 6∈ A | τ ≤ T ] > α, so

esc(v, T,A) = P∗
[
∪Ti=0(Xi 6∈ A)

]
≥ P∗ [Xτ 6∈ A ∧ τ ≤ T ]

= P∗ [Xτ 6∈ A | τ ≤ T ] P∗ [τ ≤ T ]

> α ·P∗ [τ ≤ T ] .

Therefore,

P̂v

[
max
t≤T

vol(St −A)

vol(St)
> α

]
= P∗ [τ ≤ T ] <

esc(v, T,A)

α
.

The lemma follows by taking α = β esc(v, T,A).

We now combine the results of this section to prove Theorem 12.3.1. The proof simply follows

from a simple application of the union bound.

Proof of Theorem 12.3.1. If φ ≥ 1/2 we simply return v. Otherwise assume φ < 1/2. First of all,

we let A′ be the set of vertices v ∈ A such that

rem(v, T,A) ≥ c
(

1− 3φ(A)

2

)T
.
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By Proposition 8.3.1, there exists a constant c > 0 such that vol(A′) ≥ vol(A)/2. In the rest of the

proof let v be a vertex in A′. We have,

esc(v, T,A) ≤ 1− c
(

1− 3φ(A)

2

)T
≤ 1− c

(
1− 3φ

2

) ε log k
3φ

≤ 1− ck−ε,

where we used φ ≤ 1/2. Now, let β := 1 + ck−ε/2. By Lemma 12.3.5, we have

P̂v

[
max
t≤T

vol(St −A)

vol(St)
≤ β esc(v, T,A) ≤ 1− ck−ε

2

]
≥ 1− 1

β
≥ ck−ε

4

Since for any S ⊂ V , vol(S −A) + vol(S ∩A) = vol(S), we have

P̂v

[
min
t≤T

vol(St ∩A)

vol(St)
≥ ck−ε

2

]
≥ ck−ε

4

On the other hand, let α := k. By Lemma 12.3.3, with probability 1− 1/k, for some t ∈ [0, T ],

φ2(St) ≤
1

T

T∑
i=0

φ2(Si) ≤
8(log k + log vol(ST ))

T
.

Therefore, since ε < 1, by the union bound we have

P̂v

[
min
t≤T

vol(St ∩A)

vol(St)
≥ ck−ε

2

∧
∃ t : φ(St) ≤

√
8(log k + log vol(ST ))

T

]
≥ ck−ε

8

Finally, since for any set S ⊆ V , vol(S ∩ A) ≤ vol(A) ≤ k, in the above event, vol(ST ) ≤ 2k1+ε

c .

Therefore,

φ(St) ≤
√

8(log k + log(2k1+ε/c))

T
≤
√

100(1− log c)φ

ε
,

which completes the proof.

To prove Theorem 12.1.1, we can simply run kε copies of the volume biased ESP in parallel. Using

the previous lemma with a constant probability at least one of the copies finds a non-expanding set.

Moreover, we may bound the time complexity of the algorithm using Theorem 12.2.4. The details

of the algorithm is described in Algorithm 14.

Algorithm 14 ParESP(v, k, φ, ε)

T ← ε log k/6φ.
Run kε/2 independent copies of the volume biased ESP, using the simulator GenerateSample,
starting from {v}, in parallel. Stop each copy as soon as the length of its sample path reaches T .
As soon as any of the copies finds a set S, of volume vol(S) ≤ Kε/2(k), and conductance φ(S) ≤
Φε/2(φ), stop the algorithm and return S.
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Now we are ready to prove Theorem 12.1.1.

Proof of Theorem 12.1.1. Let A′ be as defined in Theorem 12.3.1. First of all, for any v ∈ A′, by

Theorem 12.3.1, each copy finds a set of volume Kε/2(k), and conductance Φε/2(φ) with probability

Ω(k−ε/2); in this case the algorithm will output a set satisfying theorem’s statement. But, since kε/2

copies are executed independently, at least one of them will succeed with a constant probability.

This proves the correctness of the algorithm.

It remains to compute the time complexity. Let, l := kε/2 be the number of copies, and

W1, . . . ,Wl be random variables indicating the work done by each of the copies in a single run of

ParESP, thus
∑
iWi is the time complexity of the algorithm. Note that it is possible that Wi < Wj

for some i 6= j, since the i-th copy may stop without finding any small non-expanding sets. Let

Sout be the output of the algorithm. If the algorithm returns the output of the ith copy we define

Ii = 1/vol(Sout) and we let Ii = 0 otherwise. Also, let I :=
∑
Ii; note that if the algorithm returns

the empty set, then I = 0. We write P̂l
v [.] to denote the probability measure of the l independent

volume biased ESP all started from S0 = {v}, and Êl
v [.] for the expectation. To prove the theorem

it is sufficient to show

Êl
v

[
I

l∑
i=1

Wi

]
= O(kεφ−1/2 log2 n).

By linearity of expectation, it is sufficient to show that for all 1 ≤ i ≤ k,

Êl
v

Ii l∑
j=1

Wj

 = O(kε/2φ−1/2 log2 n),

By symmetry of the copies, it is sufficient to show the above equation only for i = 1. Furthermore,

since conditioned on I1 6= 0, W1 = maxiWi, we just need to show,

Êl
v [I1W1] = O(φ−1/2 log2 n),

Let τ be a stopping time for the first copy which indicates the first time t where vol(St) ≤ Kε/2(k)

and φ(St) ≤ Φε/2(φ), Sτ be the corresponding set at time τ , and W1(τ) be the amount of work done

by time τ in the first copy. Note that we always have W1 ≤ W1(τ) because the first copy may be

stopped since one of the other copies succeeded. Since I1 ≤ 1/vol(Sτ ) with probability 1, for any

element of the joint probability space we have I1W1 ≤W1(τ)/vol(Sτ ). Therefore,

Êl
v [I1W1] ≤ Êl

v

[
W1(τ)

vol(Sτ )

]
= Êv

[
W (τ)

vol(Sτ )

]
= O(T 1/2 log3/2 n) = O(φ−1/2 log2 n),

where the second to last equation follows from Theorem 12.2.4.
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Chapter 13

Partitioning into Expanders

There is a basic fact in algebraic graph theory that λk > 0 if and only if G has at most k−1 connected

components. We prove a robust version of this fact. If λk > 0, then for some 1 ≤ l ≤ k − 1, V can

be partitioned into l sets P1, . . . , Pl such that each Pi is a low-conductance set in G and induces a

high conductance induced subgraph. In particular, φ(Pi) . l3
√
λl and φ(G[Pi]) & λk/k

2.

Our main technical lemma shows that if (1 + ε)ρ(k) < ρ(k + 1), then V can be partitioned into

k sets P1, . . . , Pk such that for each 1 ≤ i ≤ k, φ(G[Pi]) & ε · ρ(k + 1)/k and φ(Pi) ≤ k · ρ(k).

This significantly improves a recent result of Tanaka [Tan12] who assumed an exponential (in k) gap

between ρ(k) and ρ(k + 1).

The results of this chapter are based on a joint work with Luca Trevisan [OT13].

13.1 Introduction

In the preceding chapters we study several algorithms for finding sets of small conductance in G. As

we described in the introduction a set of small conductance can represent a cluster of graph G. For

example, Shi and Malik [SM00] used a partitioning of G to sets of small conductance and obtained

Figure 13.1.1: In this example although both sets in the 2-partitioning are of small conductance, in
a natural clustering the red vertex (middle vertex) will be merged with the left cluster

274
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Figure 13.1.2: Two 4-partitioning of the cycle graph. In both of the partitionings the number of
edges between the clusters are exactly 4, and the inside conductance of all components is at least
1/2 in both cases. But, the right clustering is a more natural clustering of cycle.

high quality solutions in image segmentation applications. It turns out that for many graphs just

the fact that a set S has a small conductance is not enough to argue that it is a good cluster;

this is because although φ(S) is small, S can be loosely-connected or even disconnected inside (see

Figure 13.1.1).

Kannan, Vempala and Vetta [KVV04] proposed a bicriteria measure, where they measure the

quality of a k-clustering based on the inside conductance of sets and the number of edges between the

clusters. For P ⊆ V let φ(G[P ]) be the inside conductance of P , i.e., the conductance of the induced

subgraph of G on the vertices of P . Kannan et al. [KVV04] suggested that a k-partitioning into

P1, . . . , Pk is good if φ(G[Pi]) is large, and
∑
i 6=j w(Pi, Pj) is small. It turns out that an approximate

solution for this objective function can be very different than the “correct” k-partitioning. Consider

a 4-partitioning of a cycle as we illustrate in Figure 13.1.2. Although the inside conductance of every

set in the left partitioning is within a factor 2 of the right partitioning, the left partitioning does not

provide the “correct” 4-partitioning of a cycle.

In this chapter we propose a third objective which uses both of the inside/outside conductance of

the clusters. Roughly speaking, S ⊆ V represents a good cluster when φ(S) is small, but φ(G[S]) is

large. In other words, although S doesn’t expand in G, the induced subgraph G[S] is an expander.

Definition 13.1.1. We say k disjoint subsets A1, . . . , Ak of V are a (φin, φout)-clustering, if for all

1 ≤ i ≤ k,

φ(G[Ai]) ≥ φin and φG(Ai) ≤ φout.

To the best of our knowledge, the only theoretical result that guarantees a (φin, φout) partitioning

of G is a recent result of Tanaka [Tan12]. Tanaka [Tan12] proved that if there is a large enough

gap between ρ(k) and ρ(k + 1) then G has a k-partitioning that is a (exp(k)ρ(k), ρ(k + 1)/ exp(k))-

clustering (see equation (10.1.1) for the definition of ρ(k)).
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Theorem 13.1.2 (Tanaka [Tan12]). If ρG(k + 1) > 3k+1ρG(k) for some k, then G has a k-

partitioning that is a (ρ(k + 1)/3k+1, 3kρ(k))-clustering.

Unfortunately, Tanaka requires a very large gap (exponential in k) between ρ(k) and ρ(k + 1).

Furthermore, the above result is not algorithmic, in the sense that he needs to find the optimum

sparsest cut of G or its induced subgraphs to construct the k-partitioning.

13.1.1 Related Works

Kannan, Vempala and Vetta in [KVV04] designed an approximation algorithm to find a partitioning

of a graph that cuts very few edges and each set in the partitioning has a large inside conductance.

Comparing to Definition 13.1.1 instead of minimizing φ(Ai) for each set Ai they minimize
∑
i φ(Ai).

Very recently, Zhu, Lattanzi and Mirrokni [ZLM13] designed a local algorithm to find a set S such

that φ(S) is small and φ(G[S]) is large assuming that such a set exists. Both of these results do

not argue about the existence of a partitioning with large inside conductance. Furthermore, unlike

Cheeger type inequalities the quality of approximation factor of these algorithms depends on the

size of the input graph (or the size of the cluster S).

13.1.2 Our Contributions

Partitioning into Expanders There is a basic fact in algebraic graph theory that for any graph

G and any k ≥ 2, λk > 0 if and only if G has at most k − 1 connected components. It is a natural

question to ask for a robust version of this fact. Our main existential theorem provides a robust

version of this fact.

Theorem 13.1.3. For any k ≥ 2 if λk > 0, then for some 1 ≤ l ≤ k− 1 there is a l-partitioning of

V into sets P1, . . . , Pl that is a (Ω(ρ(k)/k2), O(lρ(l))) = (Ω(λk/k
2), O(l3)

√
λl) clustering.

The above theorem can be seen as a generalization of Theorem 10.1.1.

Algorithmic Results The above result is not algorithmic but with some loss in the parameters

we can make them algorithmic.

Theorem 13.1.4 (Algorithmic Theorem). There is a simple local search algorithm that for any

k ≥ 1 if λk > 0 finds a l-partitioning of V into sets P1, . . . , Pl that is a (Ω(λ2
k/k

4), O(k6
√
λk−1)

where 1 ≤ l < k. If G is unweighted the algorithm runs in a polynomial time in the size of G.

The details of the above algorithm are described in Algorithm 17. We remark that the algorithm does

not use any SDP or LP relaxation of the problem. It only uses the Spectral Partitioning algorithm

as a subroutine. Furthermore, unlike the spectral clustering algorithms studied in [NJW02, LOT12],

our algorithm does not use multiple eigenfunctions of the normalized laplacian matrix. It rather

iteratively refines a partitioning of G by adding non-expanding sets that induce an expander.
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Suppose that there is a large gap between λk and λk+1. Then, the above theorem (together

with 13.1.9) implies that there is a k partitioning of V such that inside conductance of each set

is significantly larger than its outside conductance in G. Furthermore, such a partitioning can be

found in polynomial time. This partitioning may represent one of the best k-clusterings of the graph

G.

If instead of the Spectral Partitioning algorithm we use the O(
√

log n)-approximation algorithm

for φ(G) developed in [ARV09] the same proof implies that P1, . . . , Pl are a

(
Ω
( λk

k2 ·
√

log(n)

)
, k3
√
λk−1

)
clustering.

To the best of our knowledge, the above theorem provides the first polynomial time algorithm

that establishes a Cheeger-type inequality for the inside/outside conductance of sets in a k-way

partitioning.

Main Technical Result The main technical result of this paper is the following theorem. We

show that even if there is a very small gap between ρ(k) and ρ(k+1) we can guarantee the existence

of a (Ωk(ρ(k + 1)), Ok(ρ(k)))-clustering.

Theorem 13.1.5 (Existential Theorem). If ρG(k + 1) > (1 + ε)ρG(k) for some 0 < ε < 1, then

i) There exists k disjoint subsets of V that are a (ε · ρ(k + 1)/7, ρ(k))-clustering.

ii) There exists a k-partitioning of V that is a (ε · ρ(k + 1)/(14k), kρ(k))-clustering.

The importance of the above theorem is that the gap is even independent of k and it can be

made arbitrarily close to 0. Compared to Theorem 13.1.2, we require a very small gap between ρ(k)

and ρ(k+ 1) and the quality of our k-partitioning has a linear loss in terms of k. We show tightness

of above theorem in Subsection 13.1.3.

Using the above theorem it is easy to prove Theorem 13.1.3.

Proof of Theorem 13.1.3. Assume λk > 0 for some k ≥ 2. By Theorem 10.1.1 we can assume

ρ(k) ≥ λk/2 > 0. Since ρ(1) = 0 we have (1 + 1/k)ρ(l) < ρ(l + 1) at least for one index 1 ≤ l < k.

Let l be the largest index such that (1 + 1/k)ρ(l) < ρ(l + 1); it follows that

ρ(k) ≤ (1 + 1/k)k−l−1ρ(l + 1) ≤ e · ρ(l + 1). (13.1.1)

Therefore, by part (ii) of Theorem 13.1.5 there is a l-partitioning of V into sets P1, . . . , Pl such that

for all 1 ≤ i ≤ l,

φ(G[Pi]) ≥
ρ(l + 1)

14k · l
≥ ρ(k)

40k2
≥ λk

80k2
, and
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φ(Pi) ≤ lρ(l) ≤ O(l3)
√
λl.

where we used (13.1.1) and Theorem 10.1.1. The following corollary follows.

Building on Theorem 10.1.1 we can also prove the existence of a good k-partitioning of G if there

is a large enough gap between λk and λk+1.

Corollary 13.1.6. There is a universal constant c > 0, such that for any graph G if λk+1 ≥
c · k2

√
λk, then there exists a k-partitioning of G that is a (Ω(λk+1/k), O(k3

√
λk))-clustering.

13.1.3 Tightness of Existential Theorem

In this part we provide several examples showing the tightness of Theorem 13.1.5. In the first

example we show that if there is no gap between ρ(k) and ρ(k + 1) then G cannot be partitioned

into expanders.

Example 13.1.7. In the first example we construct a graph such that there is no gap between ρ(k)

and ρ(k+ 1) and we show that in any k-partitioning there is a set P such that φ(G[P ])� ρ(k+ 1).

Suppose G is a star. Then, for any k ≥ 2, ρ(k) = 1. But, among any k disjoint subsets of G there

is a set P with φ(G[P ]) = 0. Therefore, for any k ≥ 2, there is a set P with φ(G[P ])� ρ(k + 1).

In the next example we show that a linear loss in k is necessary in the quality of our k-partitioning

in part (ii) of Theorem 13.1.5.

Example 13.1.8. In this example we construct a graph such that in any k-partitioning there is a

set P with φ(P ) ≥ Ω(k · ρ(k)). Furthermore, in any k partitioning where the conductance of every

set is Ok(ρ(k)), there is a set P such that φ(G[P ]) ≤ O(ρ(k + 1)/k).

Let G be a union of k + 1 cliques C0, C1, . . . , Ck each with ≈ n/(k + 1) vertices where n � k.

Also, for any 1 ≤ i ≤ k, include an edge between C0 and Ci. In this graph ρ(k) = Θ(k2/n2) by

choosing the k disjoint sets C1, . . . , Ck. Furthermore, ρ(k + 1) = Θ(k · ρ(k)).

Now consider a k partitioning of G. First of all if there is a set P in the partitioning that

contains a proper subset of one the cliques, i.e., ∅ ⊂ (P ∩ Ci) ⊂ Ci for some i, then φ(P ) ≥
Ωk(1/n) = Ωk(n · ρ(k)). Otherwise, every clique is mapped to one of the sets in the partitioning.

Now, let P be the set containing C0 (P may contain at most one other clique). It follows that

φ(P ) = Ω(k · ρ(k)).

Now, suppose we have a partitioning of G into k sets such that the conductance of each set is

Ok(ρ(k)). By the arguments in above paragraph none of the sets in the partitioning can have a proper

subset of one cliques. Since we have k + 1 cliques there is a set P that contains exactly two cliques

Ci, Cj, for i 6= j. It follows that φ(G[P ]) ≤ O(ρ(k)/k).
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13.1.4 Notations

For a function f : V → R let

R(f) :=

∑
(u,v)∈E |f(u)− f(v)|2∑

v∈V w(v)f(v)2

The support of f is the set of vertices with non-zero value in f ,

supp(f) := {v ∈ V : f(v) 6= 0}.

We say two functions f, g : V → R are disjointly supported if supp(f) ∩ supp(g) = ∅.
For S ⊆ P ⊆ V we use φG[P ](S) to denote the conductance of S in the induced subgraph G[P ].

For S, T ⊆ V we use

w(S → T ) :=
∑

u∈S,v∈T−S
w(u, v).

We remark that in the above definition S and T are not necessarily disjoint, so w(S → T ) is not

necessarily the same as w(T → S).

For S ⊆ Bi ⊆ V we define

ϕ(S,Bi) :=
w(S → Bi)

vol(Bi−S)
vol(Bi)

· w(S → V −Bi)

Let us motivate the above definition. Suppose Bi ⊆ V such that φG(Bi) is very small but φ(G[Bi])

is very large. Then, any S ⊆ Bi such that vol(S) ≤ vol(Bi)/2 satisfy the following properties.

• Since φG[Bi](S) is large, a large fraction of edges adjacent to vertices of S must leave this set.

• Since φG(Bi) is small, a small fraction of edges adjacent to S may leave Bi.

Putting above properties together we obtain that w(S → Bi) & w(S → V −Bi), thus ϕ(S,Bi) is a

constant. As we describe in the next section the converse of this argument is a crucial part of our

proof. In particular, if for any S ⊆ Bi, ϕ(S,Bi) is large, then Bi has large inside conductance, and

it can be used as the “backbone” of our k-partitioning.

13.1.5 Overview of the Proof

We prove Theorem 13.1.5 in two steps. Let A1, . . . , Ak be any k disjoint sets such that φ(Ai) ≤
(1 + ε)ρ(k+ 1). In the first step we find B1, . . . , Bk such that for 1 ≤ i ≤ k, φ(Bi) ≤ φ(Ai) with the

crucial property that any subset of Bi has at least a constant fraction of its outgoing edges inside Bi.

We then use B1, . . . , Bk as the “backbone” of our k-partitioning. We merge the remaining vertices

with B1, . . . , Bk to obtain P1, . . . , Pk making sure that for each S ⊆ Pi −Bi at least 1/k fraction of

the outgoing edges of S go to Pi (i.e., w(S → Pi) ≥ w(S → V )/k).
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We show that if 2 max1≤i≤k φ(Ai) < ρ(k + 1) then we can construct B1, . . . , Bk such that every

S ⊆ Bi satisfies ϕ(S,Bi) ≥ Ω(1) (see Lemma 13.2.1). For example, if vol(S) ≤ vol(Bi)/2, we obtain

that

w(S → Bi − S) & w(S → V ).

This property shows that each Bi has an inside conductance of Ω(ρ(k + 1)) (see Lemma 13.2.3). In

addition, it implies that any superset of Bi, Pi ⊇ Bi, has an inside conductance φ(G[Pi]) & α·ρ(k+1)

as long as for any S ⊆ Pi−Bi, w(S → Bi) ≥ α·w(S → V ) (see Lemma 13.2.6). By latter observation

we just need to merge the vertices in V −B1− . . .−Bk with B1, . . . , Bk and obtain a k-partitioning

P1, . . . , Pk such that for any S ⊆ Pi −Bi, w(S → PI) ≥ w(S → V )/k.

13.1.6 Background on Higher Order Cheeger’s Inequality

In this short section we use the machinery developed in Chapter 10 to show that for any partitioning

of V into l < k sets P1, . . . , Pl the minimum inside conductance of Pi’s is poly(k)
√
λk.

Lemma 13.1.9. There is a universal constant c0 > such that for any k ≥ 2 and any partitioning

of V into l sets P1, . . . , Pl of V where l ≤ k − 1, we have

min
1≤i≤l

λ2(G[Pi]) ≤ 2c0k
6λk.

where λ2(G[Pi]) is the second eigenvalue of the normalized laplacian matrix of the induced graph

G[Pi].

Proof. Let f1, . . . , fk be the first k eigenfunctions of L corresponding to λ1, . . . , λk. By definition

R(fi) = λi.

By Theorem 10.1.5 there are k disjointly supported functions g1, . . . , gk such thatR(gi) ≤ c0k6λk.

For any 1 ≤ j ≤ l let gi,j be the restriction of gi to the induced subgraph G[Pi]. It follows that

R(gi) ≥
∑l
j=1

∑
(u,v)∈E(Pj)

|gi(v)− gi(u)|2∑l
j=1

∑
v∈Pj gi(v)2

≥ min
1≤j≤l

∑
(u,v)∈E(Pj)

|gi(u)− gi(v)|2∑
v∈Pj gi(v)2

= min
1≤j≤l

R(gi,j).

(13.1.2)

For each 1 ≤ i ≤ l let j(i) := argmin1≤j≤lR(gi,j). Since l < k, by the pigeon hole principle, there

are two indices 1 ≤ i1 < i2 ≤ k such that j(i1) = j(i2) = j∗ for some 1 ≤ j∗ ≤ l. Since g1, . . . , gk

are disjointly supported, by Lemma 7.2.1

λ2(G[Pj∗ ]) ≤ 2 max{R(gi1,j∗),R(gi2,j∗)} ≤ 2 max{R(gi1),R(gi2)} ≤ 2c0k
6λk.

where the second inequality follows by (13.1.2).

The above lemma is used in the proof of Theorem 13.1.4.
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13.2 Proof of Existential Theorem

In this section we prove Theorem 13.1.5. Let A1, . . . , Ak are k disjoint sets such that φ(Ai) ≤ ρ(k) for

all 1 ≤ i ≤ k. In the first lemma we construct k disjoint sets B1, . . . , Bk such that their conductance

in G is only better than A1, . . . , Ak with the additional property that ϕ(S,Bi) ≥ ε/3 for any S ⊆ Bi.

Lemma 13.2.1. Let A1, . . . , Ak be k disjoint sets s.t. (1 + ε)φ(Ai) ≤ ρ(k + 1) for 0 < ε < 1. For

any 1 ≤ i ≤ k, there exist a set Bi ⊆ Ai such that the following holds:

1. φ(Bi) ≤ φ(Ai).

2. For any S ⊆ Bi, ϕ(S,Bi) ≥ ε/3.

Proof. For each 1 ≤ i ≤ k we run Algorithm 15 to construct Bi from Ai. Note that although the

algorithm is constructive, it may not run in polynomial time. The reason is that we don’t know any

(constant factor approximation) algorithm for minS⊆Bi ϕ(S,Bi).

Algorithm 15 Construction of B1, . . . , Bk from A1, . . . , Ak
Bi = Ai.
loop

if ∃S ⊂ Bi such that ϕ(S,Bi) ≤ ε/3 then,
Update Bi to either of S or Bi − S with the smallest conductance in G.

else
return Bi.

end if
end loop

First, observe that the algorithm always terminates after at most |Ai| iterations of the loop since

|Bi| decreases in each iteration. The output of the algorithm always satisfies conclusion 2 of the

lemma. So, we only need to bound the conductance of the output set. We show that throughout

the algorithm we always have

φ(Bi) ≤ φ(Ai). (13.2.1)

In fact, we prove something stronger. That is, the conductance of Bi never increases in the entire

run of the algorithm. We prove this by induction. At the beginning Bi = Ai, so (13.2.1) obviously

holds. It remains to prove the inductive step.

Let S ⊆ Bi such that ϕ(S,Bi) ≤ ε/3. Among the k+1 disjoint sets {A1, . . . , Ai−1, S, T,Ai+1, Ak}
there is one of conductance ρG(k + 1). So,

max{φ(S), φ(Bi − S)} ≥ ρG(k + 1) ≥ (1 + ε)φ(Ai) ≥ (1 + ε)φ(Bi).

The inductive step follows from the following lemma.
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Lemma 13.2.2. For any set Bi ⊆ V and S ⊂ Bi, if ϕ(S,Bi) ≤ ε/3 and

max{φ(S), φ(Bi − S)} ≥ (1 + ε)φ(Bi), (13.2.2)

then min{φ(S), φ(Bi − S)} ≤ φ(Bi).

Proof. Let T = Bi − S. Since ϕ(S,Bi) ≤ ε/3,

w(S → T ) ≤ ε

3
· vol(T )

vol(Bi)
· w(S → V −Bi) ≤

ε

3
· w(S → V −Bi). (13.2.3)

We consider two cases depending on whether φ(S) ≥ (1 + ε)φ(Bi).

Case 1: φ(S) ≥ (1 + ε)φ(Bi). First, by (13.2.3).

(1 + ε)φ(Bi) ≤ φ(S) =
w(S → T ) + w(S → V −Bi)

vol(S)
≤ (1 + ε/3)w(S → V −Bi)

vol(S)
(13.2.4)

Therefore,

φ(T ) =
w(Bi → V )− w(S → V −Bi) + w(S → T )

vol(T )

≤ w(Bi → V )− (1− ε/3)w(S → V −Bi)
vol(T )

≤ φ(Bi)(vol(Bi)− vol(S)(1 + ε/2)(1− ε/3))

vol(T )

≤ φ(Bi)vol(T )

vol(T )
= φ(Bi).

where the first inequality follows by (13.2.3) and the second inequality follows by (13.2.4) and

that ε ≤ 1.

Case 2: φ(T ) ≥ (1 + ε)φ(Bi). First,

(1 + ε)φ(Bi) ≤ φ(T ) =
w(S → T ) + w(T → V −Bi)

vol(T )
(13.2.5)
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Therefore,

φ(S) =
w(Bi → V )− w(T → V −Bi) + w(S → T )

vol(S)

≤ w(Bi → V )− (1 + ε)φ(Bi)vol(T ) + 2w(S → T )

vol(S)

≤
φ(Bi)(vol(Bi)− (1 + ε)vol(T )) + 2ε

3 · vol(T ) · φ(Bi)

vol(S)

≤ φ(Bi)vol(S)

vol(S)
= φ(Bi).

where the first inequality follows by (13.2.5), the second inequality follows by (13.2.3) and that

w(S → V −Bi) ≤ w(Bi → V −Bi). So we get φ(S) ≤ φ(Bi).

This completes the proof of Lemma 13.2.2.

This completes the proof of Lemma 13.2.1.

Note that sets that we construct in the above lemma do not necessarily define a partitioning of G.

In the next lemma we show that the sets B1, . . . , Bk that are constructed above have large inside

conductance.

Lemma 13.2.3. Let Bi ⊆ V , and S ⊆ Bi such that vol(S) ≤ vol(Bi)/2. If ϕ(S,Bi), ϕ(Bi−S,Bi) ≥
ε/3 for ε ≤ 1, then

φG[Bi](S) ≥ w(S → Bi)

vol(S)
≥ ε

7
·max{φ(S), φ(Bi − S)},

Proof. Let T = Bi − S. First, we lower bound φG[Bi](S) by ε · φ(S)/7. Since ϕ(S,Bi) ≥ ε/3,

w(S → Bi)

vol(S)
=
ϕ(S,Bi) · vol(T )

vol(Bi)
· w(S → V −Bi)

vol(S)
≥ ε · w(S → V −Bi)

6vol(S)

where the first inequality follows by the assumption vol(S) ≤ vol(Bi)/2. Summing up both sides of

the above inequality with εw(S→Bi)
6vol(S) and dividing by 1 + ε/6 we obtain

w(S → Bi)

vol(S)
≥ ε/6

(1 + ε/6
· ·w(S → V )

vol(S)
≥ ε · φ(S)

7
.
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where we used ε ≤ 1. It remains to φG[Bi](S) by ε · φ(Bi − S)/7. Since ϕ(T,Bi) ≥ ε/3,

w(S → Bi)

vol(S)
=
w(T → Bi)

vol(S)
=

ϕ(T,Bi) · w(T → V −Bi)
vol(Bi)

≥ ε

3
· w(T → V −Bi)

vol(Bi)

≥ ε

6
· w(T → V −Bi)

vol(T )

where the last inequality follows by the assumption vol(S) ≤ vol(Bi)/2. Summing up both sides of

the above inequality with ε·w(S→Bi)
6vol(S) we obtain,

(1 + ε/6)
w(S → Bi)

vol(S)
≥ ε

6
· w(T → V )

vol(T )
≥ ε · φ(T )

6
.

where we used the assumption vol(S) ≤ vol(Bi)/2. The lemma follows using the fact that ε ≤ 1.

Let B1, . . . , Bk be the sets constructed in Lemma 13.2.1. Then, for each Bi and S ⊆ Bi since

φ(Bj) < ρ(k + 1) for all 1 ≤ j ≤ k, we get

max(φ(S), φ(T )) ≥ ρ(k + 1).

Therefore, by the above lemma, for all 1 ≤ i ≤ k,

φ(G[Bi]) ≥ ε · ρ(k + 1)/7, and φ(Bi) ≤ max
1≤i≤k

ρ(Ai) ≤ ρ(k).

This completes the proof of part (i) of Theorem 13.1.5.

It remains to prove part (ii). To prove part (ii) we have to turn B1, . . . , Bk into a k-partitioning.

We run the following algorithm to merge the vertices that are not included in B1, . . . , Bk. Again,

although this algorithm is constructive, it may not run in polynomial time. The main difficulty is

in finding a set S ⊂ Pi −Bi such that w(S → Pi) < w(S → Pj), if such a set exists.

Algorithm 16 Construction of P1, . . . , Pk based on the B1, . . . , Bk
Let Pi = Bi for all 1 ≤ i ≤ k − 1, and Pk = V −B1 −B2 − . . .−Bk−1 (note that Bk ⊆ Pk).
while there is i 6= j and S ⊂ Pi −Bi, such that w(S → Pi) < w(S → Pj), do

Update Pi = Pi − S, and merge S with argmaxPj w(S → Pj).
end while

First, observe that above algorithm always terminates in a finite number of steps. This is because

in each iteration of the loop the weight of edges between the sets decreases. That is,

∑
1≤i<j≤k

w(Pi → Pj)
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decreases. The above algorithm has two important properties which are the key ideas of the proof.

Fact 13.2.4. The output of the above algorithm satisfies the following.

1. For all 1 ≤ i ≤ k, Bi ⊆ Pi.

2. For any 1 ≤ i ≤ k, and any S ⊆ Pi −Bi, we have

w(S → Pi) ≥ w(S → V )/k.

Next, we use the above properties to show that the resulting sets P1, . . . , Pk are non-expanding

in G

Lemma 13.2.5. Let Bi ⊆ Pi ⊆ V such that w(Pi −Bi → Bi) ≥ w(Pi −Bi → V )/k. Then

φ(Pi) ≤ kφ(Bi).

Proof. Let S = Pi −Bi. Therefore,

φ(Pi) =
w(Pi → V )

vol(Pi)
≤ w(Bi → V ) + w(S → V − Pi)− w(S → Bi)

vol(Bi)

≤ φ(Bi) +
(k − 1)w(Bi → S)

vol(Bi)
≤ kφ(Bi).

The second inequality uses conclusion 2 of Fact 13.2.4.

It remains to lower-bound the inside conductance of each Pi. This is proved in the next lemma.

For a S ⊆ Pi we use the following notations in the next lemma (see Figure 13.2.3 for an illustration).

SB := Bi ∩ S, SB := Bi ∩ S,
SP := S −Bi, SP := S −Bi.

Lemma 13.2.6. Let Bi ⊆ Pi ⊆ V and let S ⊆ Bi such that vol(SB) ≤ vol(Bi)/2. Let ρ ≤ φ(SP )

and ρ ≤ max{φ(SB), φ(SB))} and 0 < ε < 1. If the following conditions hold then φ(S) ≥ ε · ρ/14k.

1) If SP 6= ∅, then w(SP → Pi) ≥ w(SP → V )/k,

2) If SB 6= ∅ and SB 6= Bi, then ϕ(SB , Bi) ≥ ε/3 and ϕ(SB , Bi) ≥ ε/3.

Proof. We consider 2 cases.

Case 1: vol(SB) ≥ vol(SP ) : Because of assumption (2) and vol(SB) ≤ vol(Bi)/2 we can apply

Lemma 13.2.3, and we obtain

φG[Pi](S) ≥ w(S → Pi)

vol(S)
≥ w(SB → Bi)

2vol(SB)
≥ ε ·max{φ(SB), φ(SB)}

14vol(SB)
≥ ε · ρ

14
.
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SBSB

SPSP

Bi

S

Figure 13.2.3: The circle represents Pi, the top (blue) semi-circle represents Bi and the right (red)
semi-circle represents the set S.

Case 2: vol(SP ) ≥ vol(SB) :

φG[Pi](S) ≥ w(S → Pi)

vol(S)
≥ w(SP → Pi − S) + w(SB → Bi)

2vol(SP )

≥ w(SP → Pi − S) + ε · w(SB → SP )/6

2vol(SP )

≥ ε · w(SP → Pi)

12vol(SP )

≥ ε · w(SP → V )

12kvol(SP )

≥ ε · φ(SP )/12k ≥ ε · ρG(k + 1)/12k.

where the third inequality follows by the assumption that ϕ(SB , Bi) ≥ ε/3 and vol(SB) ≤
vol(Bi)/2, and the fifth inequality follows by assumption (1).

Let B1, . . . , Bk be the sets constructed in Lemma 13.2.1 and P1, . . . , Pk the sets constructed in

Algorithm 16, First, observe that we can let ρ = ρ(k + 1). This is because among the k + 1 disjoint

sets {B1, . . . , Bi−1, SB , SB , Bi+1, Bk} there is a set of conductance ρ(k+1). Similarly, among the sets

{B1, B2, . . . , Bk, SP } there is a set of conductance ρ(k+1). Since for all 1 ≤ i ≤ k, φ(Bi) < ρ(k+1),

we max{φ(SB , SB} ≥ ρ(k + 1) and φ(PS) ≥ ρ(k + 1). Therefore, by the above lemma,

φ(G[Pi]) = min
S⊂Pi

max{φG[Pi](S), φG[Pi](Pi − S)} ≥ ε · ρ(k + 1)/14k.

This completes the proof of part (ii) of Theorem 13.1.5.
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13.3 Proof of Algorithmic Theorem

In this section we prove Theorem 13.1.4. Let

ρ∗ := min{λk/10, 30c0k
5
√
λk−1}. (13.3.1)

where c0 is the constant defined in ??. We use the notation φin := λk/140k2 and φout := 90c0 ·
k6
√
λk−1.

The idea of the algorithm is simple: we start with one partitioning of G, P1 = B1 = V . Each

time we try to find a set S of small conductance in one Pi. Then, either we can use S to introduce a

new set Bl+1 of small conductance, i.e., φ(Bl+1) ≤ 4ρ∗, or we can improve the current l-partitioning

by refining Bi to one of its subsets (similar to Algorithm 15) or by moving parts of Pi to the other

sets Pj (similar to Algorithm 16).

The details of our polynomial time algorithm are described in Algorithm 17. Our algorithm is a

simple local search designed based on Algorithm 15 and Algorithm 16.

Algorithm 17 A polynomial time algorithm for partitioning G into k expanders

Input: k > 1 such that λk > 0.
Output: A (φ2

in/4, φout) l-partitioning of G for some 1 ≤ l < k.
1: Let l = 1, P1 = B1 = V .
2: while ∃ 1 ≤ i ≤ l such that w(Pi −Bi → Bi) < w(Pi −Bi → Pj) for j 6= i, or Spectral

Partitioning finds S ⊆ Pi s.t. φG[Pi](S), φG[Pi](Pi − S) < φin do
3: Assume (after renaming) vol(S ∩Bi) ≤ vol(Bi)/2.
4: Let SB = S∩Bi, SB = Bi∩S, SP = (Pi−Bi)∩S and SP = (Pi−Bi)∩S (see Figure 13.2.3).
5: if max{φ(SB), φ(SB)} ≤ (1 + 1/k)l+1ρ∗ then
6: Let Bi = SB , Pl+1 = Bl+1 = SB and Pi = Pi − SB . Set l← l + 1 and goto step 2.
7: end if
8: if max{ϕ(SB , Bi), ϕ(SB , Bi)} ≤ 1/3k, then
9: Update Bi to either of SB or SB with the smallest conductance, and goto step 2.

10: end if
11: if φ(SP ) ≤ (1 + 1/k)l+1ρ∗ then
12: Let Pl+1 = Bl+1 = SP , Pi = Pi − SP . Set l← l + 1 and goto step 2.
13: end if
14: if w(Pi −Bi → Bi) < w(Pi −Bi → Bj) for j 6= i, then
15: Update Pj = Pj ∪ (Pi −Bi), and let Pi = Bi and goto step 2.
16: end if
17: if w(SP → Pi) < w(SP → Pj) for j 6= i, then
18: Update Pi = Pi − SP and merge SP with argmaxPj w(SP → Pj).
19: end if
20: end while
return P1, . . . , Pk.

Observe that in the entire run of the algorithm B1, . . . , Bl are always disjoint, Bi ⊆ Pi and

P1, . . . , Pl form an l-partitioning of V . We prove Algorithm 17 by a sequence of steps.
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Claim 13.3.1. Throughout the algorithm we always have

max
1≤i≤l

φ(Bi) ≤ ρ∗(1 + 1/k)l.

Proof. We prove the claim inductively. By definition, at the beginning φ(B1) = 0. In each iteration

of the algorithm, B1, . . . , Bl only change in steps 6,9 and 12. It is straightforward that by executing

either of steps 6 and 12 we satisfy induction claim, i.e., we obtain l + 1 sets B1, . . . , Bl+1 such that

for all 1 ≤ i ≤ l + 1,

φ(Bi) ≤ ρ∗(1 + 1/k)l+1.

On the other hand, if step 9 is executed, then the condition of 5 is not satisfied, i.e.,

max{φ(SB), φ(SB)} > (1 + 1/k)l+1ρ∗ ≥ (1 + 1/k)φ(Bi).

where the last inequality follows by the induction hypothesis. Since min{ϕ(SB , Bi), ϕ(SB , Bi)} ≤
1/3k for ε = 1/k by Lemma 13.2.2 we get

min{φ(SB), φ(SB)} ≤ φ(Bi) ≤ (1 + 1/k)lρ∗,

which completes the proof.

Claim 13.3.2. In the entire run of the algorithm we have l < k.

Proof. The follows from the previous claim. If l = k, then by previous claim we have disjoint sets

B1, . . . , Bk such that

max
1≤i≤k

Bi ≤ ρ∗(1 + 1/k)k ≤ e · ρ∗ ≤ eλk/10 < λk/2.

where we used (13.3.1). But, the above inequality implies ρ(k) < λk/2 which contradicts Theo-

rem 10.1.1.

Claim 13.3.3. If the algorithm terminates, then it returns a l-partitioning of V that is a (φ2
in/4, φout)-

clustering.

Proof. Suppose the algorithm terminates with sets B1, . . . , Bl and P1, . . . , Pl. Since by the loop

condition, for each 1 ≤ i ≤ k,

w(Pi −Bi → Bi) ≥ w(Pi −Bi → V )/k,

by Lemma 13.2.5,

φ(Pi) ≤ lφ(Bi) ≤ l · e · ρ∗ ≤ 90c0 · k6
√
λk−1.
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where the second inequality follows by Claim 13.3.1, and the last inequality follows by Claim 13.3.2

and (13.3.1).

On the other hand, by the condition of the loop and the performance of Spectral Partitioning

algorithm as described in Theorem 7.8.1, for each 1 ≤ i ≤ k,

φ(G[Pi]) ≥ φ2
in/4 = Ω(λ2

k/k
4).

It remains to show that the algorithm indeed terminates. First, we show that in each iteration

of the loop at least one of the conditions are satisfied.

Claim 13.3.4. In each iteration of the loop at least one of the conditions hold.

Proof. We use Lemma 13.2.6 to show that if none of the conditions in the loop are satisfied then

φ(S) ≥ φin which is a contradiction. So, for the sake of contradiction assume in an iteration of the

loop none of the conditions hold.

First, since conditions of 8 and 17 do not hold, for ε = 1/k assumptions (1) and (2) of Lemma 13.2.6

are satisfied. Furthermore, since condition of steps 5 and 11 do not hold

max{φ(SB , SB)} = max{φ(B1), . . . , φ(Bi−1), φ(SB), φ(SB), φ(Bi+1, . . . , φ(Bl)} ≥ max{ρ∗, ρ(l + 1)}.

φ(PS) = max{φ(B1), . . . , , . . . , φ(Bl), φ(PS)} ≥ max{ρ∗, ρ(l + 1)}.

where we used Claim 13.3.1. So, for ρ = ρ∗ and ε = 1/k by Lemma 13.2.6 we get

φ(S) ≥ ε · ρ
14k

=
max{ρ∗, ρ(l + 1)}

14k2
. (13.3.2)

Now, if l = k − 1, then by Theorem 10.1.1 we get

φ(S) ≥ ρ(k)

14k2
≥ λk

28k2
≥ φin,

which is a contradiction and we are done. Otherwise, we must have l < k−1. Then by Lemma 13.1.9,

φ(S) ≤ min
1≤i≤l

√
2λ2(G[Pi]) ≤

√
4c0k6λk−1, (13.3.3)

where the first inequality follows by the Cheeger’s inequality (Theorem 7.8.1), Putting (13.3.2) and

(13.3.3) together we have

ρ∗ ≤ 14k2
√

4c0k6λk−1.
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But, by definition of ρ∗ in equation (13.3.1)), we must have ρ∗ = λk/10. Therefore, by (13.3.2),

φ(S) ≥ λk
140k2

= φin,

which is a contradiction, and we are done.

It remains to show that the algorithm actually terminates and if G is unweighted it terminates

in polynomial time.

Claim 13.3.5. For any graph G the algorithm terminates in finite number of iterations of the loop.

Furthermore, if G is unweighted, the algorithm terminates after at most O(kn · |E|) iterations of the

loop.

Proof. In each iteration of the loop at least one of conditions in lines 5,8,11,14 and 17 are satisfied.

By Claim 13.3.2, Lines 5 and 11 can be satisfied at most k−1 times. Line 8 can be satisfied at most

n times (this is because each time the size of one Bi decreases by at least one vertex). Furthermore,

for a fixed B1, . . . , Bk, 14,17 may hold only finite number of iterations, because each time the total

weight of the edges between P1, . . . , Pk decreases. In particular, if G is unweighted, the latter can

happen at most O(|E|) times. So, for undirected graphs the algorithm terminates after at most

O(kn · |E|) iterations of the loop.

This completes the proof of Theorem 13.1.4.

13.4 Concluding Remarks

We propose a new model for measuring the quality of k-partitionings of graphs which involves both

the inside and the outside conductance of the sets in the partitioning. We believe that this is often

an accurate model of the quality of solutions in practical applications. Furthermore, the simple local

search Algorithm 17 can be used as a pruning step in any graph clustering algorithm.
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Open Problems

We conclude this thesis with a few open problems and future works. We think each of the Conjectures

5.3.2, 6.1.2 and 12.3.4 are very influential and each of them is a groundbreaking achievement in the

field of theoretical CS.

A proof of Conjecture 5.3.2 shows that the integrality gap of the Held-Karp LP relaxation

for ATSP (2.4.2) is constant. It also proves Conjecture 5.3.6 which has been open for decades.

An algorithmic proof of Conjecture 5.3.2 provides a constant factor approximation algorithm for

Asymmetric TSP. Recently, there has been some progress on a close variant of Conjecture 5.3.2 where

it is shown O(1/k) “spectrally” thin trees exist in graphs where the effective resistance between the

endpoints of each edge is at most 1/k [MSS13]. We refer an interested to a recent work of Harvey

and Olver [HO13, Section 4.3] for more information.

A proof of Conjecture 6.1.2 would finally break the 3/2 approximation algorithm of Christofides

[Chr76]. Apart from that, such a proof shows that maximum entropy rounding by sampling method

can be considered as a promising Heuristic in many applications of the traveling salesman problem.

A proof of Conjecture 12.3.4 would refute the Small-set expansion conjecture. There is a con-

sensus that an algorithm for the small set expansion problem can be adopted to the unique games

problem and refute this conjecture as well. Such a result can dramatically change our understanding

of approximation algorithms, since it shows that the best approximation algorithm that we know

for several of the most important optimization problems including maximum cut, minimum vertex

cover, and maximum constraint satisfiability problems are not necessarily optimal.

There are several other open problems that we suggest for future works. We describe a list of

them below.

1. It is easy to design a polynomial-time dynamic programming algorithm for Asymmetric TSP on

graphs with bounded treewidth. Nevertheless, we still do not know if every k-edge connected

graph with bounded treewidth has an O(1)/k-thin tree. Interestingly, Conjecture 5.3.6 is

291
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also open for bounded treewidth graphs. An answer to any of these questions may lead to a

constant factor approximation algorithm for ATSP in families of graphs with excluded minors.

2. In Chapter 10 we proved a higher order Cheeger’s inequality and we argued that a dependency

of Ω(
√

log k) is necessary in the right hand side of (10.1.2). It is an interesting open problem

to find the right dependency to k in the RHS of (10.1.2) In particular, whetber for any graph

G and any k ≥ 2, ρG(k) ≤ polylog(k)
√
λk.

3. Our higher order Cheeger’s inequality, Theorem 10.1.1 and Theorem 10.3.1 provide a rigorous

justification for the spectral clustering algorithm and in particular the use of kmeans Heuristic

in the last step of this algorithm, see Algorithm 2. Our algorithm that we described in

Section 10.6 suggests some natural questions. First, does dimension reduction always help to

improve the quality of clusterings in practice? For instance, if one runs the k-means algorithm

on the randomly projected points, does it yield better results? In Figure 1.2.2 we show that

at least in some examples this idea helps. Another interesting question is whether, at least in

certain circumstances, the quality of the k-means clustering can be rigorously analyzed when

used in place of our random geometric partitioning.

4. In Theorem 13.1.5 we significantly improve Theorem 13.1.2 of Tanaka [Tan12] and we show

that even if there is a small gap between ρ(k) and ρ(k + 1), for some k ≥ 1, then the graph

admits a k-partitioning that is a (poly(k)ρ(k + 1),poly(k)ρ(k))-clustering. Unfortunately, to

carry-out this result to the domain of eigenvalues we need to look for a significantly larger gap

between λk, λk+1 (see Corollary 13.1.6). It is an interesting open problem if such a partitioning

of G exists under only a constant gap between λk, λk+1. There has been a long line of works

on the sparsest cut problem and partitioning of a graph into sets of small outside conductance

[LR99, LLR95, ARV09, ALN08, BFK+11] but none of these works study the inside conductance

of the sets in the partitioning. We think it is a fascinating open problem to study efficient

algorithms based on linear programming or semidefinite programming relaxations that provide

a bicriteria approximation to the (φin, φout)-clustering problem.
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