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Abstract

We study two of the most central classical optimization problems, namely the Traveling Salesman
problems and Graph Partitioning problems and develop new approximation algorithms for them.
We introduce several new techniques for rounding a fractional solution of a continuous relaxation of
these problems into near optimal integral solutions. The two most notable of those are the maximum

entropy rounding by sampling method and a novel use of higher eigenvectors of graphs.
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Chapter 1

Introduction

Optimization problems arise in a wide range of fields including logistics, planning, marketing, adver-
tising, and policy-making. The amount of data collected and stored of our daily activities is growing
rapidly and requires better exploitation of our computing power. Better utilization of this data can
result in billions of dollars of revenue in advertising, health care, finance, and many other disciplines.
However, as of now, computing an optimal solution using simple exhaustive search algorithms would
require trillions of years to compute an optimal solution even if they were to use all the computing
power ever built by mankind. Hence, we are faced with the challenge to develop mathematical tools
that help us design efficient algorithms to determine an optimal or near optimal solution.

The main focus of this thesis is to study the approximability of classical NP-hard optimization
problems. This area of research arises from the fact that many important problems are known to be
NP-hard, i.e., under standard conjectures [For09] they cannot be solved optimally in polynomial time.
Instead, one can hope to find an approximate solution, one that is not optimal, but is guaranteed
to be within a small factor from the optimal solution.

We say a polynomial time algorithm is an « approximation for a minimization problem if the
output of the algorithm is within a factor a of the optimum in the worst case. The most common

approach in designing approximation algorithms involves four main steps:

i) Formulate the problem as an integer program.

ii) Relax the integrality constraint and obtain a convex (linear) relaxation of the problem.
ili) Compute an optimal fractional solution to the continuous relaxation.

iv) Round the fractional solution to an integer solution.

There are several ways to write a continuous relaxation for discrete optimization problems. Of these,
the most well known are the linear programing relaxations and semi-definite programming relax-

ations. For most of these methods, the first three steps outlined above can be taken systematically.
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CHAPTER 1. INTRODUCTION 3

but the last step is the most challenging. The main goal of this thesis is to address this difficult
last step: specifically, to develop new techniques for rounding fractional solutions of an optimization
problem.

Over the last thirty years, several methods have been proposed for rounding a fractional solution
of a linear or a semidefinite programming relaxation of discrete optimization problems. One of the
first was Raghavan and Thompsons randomized rounding approach [RT87] (see Section 3.1 for a
brief overview). More recent ones include the iterative rounding method [Jai0l, LRS11] and the
hyperplane rounding method [GW95, ARV09].

In the first part of this thesis we study several variants of the well-known Traveling Salesman
Problem. We propose a new rounding method, called maximum entropy rounding by sampling
method, to round a fractional solution of the Linear Programming relaxation of TSP into a near
optimal integral solution. This method has also been used in several other contexts in the last couple
of years.

In the second part of this thesis we focus on spectral algorithms. The existence of efficient al-
gorithms to compute the eigenvectors and eigenvalues of graphs (see Section 7.6) supplies a useful
tool for the design of efficient graph algorithms. Eigenvectors of a graph are optimizers of a con-
tinuous relaxation of graph partitioning problems (see Subsection 7.7.1). In fact, one can write a
semi-definite programming relaxation of multiway partitioning problems such that the optimizers
are the eigenvectors of the graph. Cheeger’s inequality [AMS85, Alo86] graph coloring algorithms
[AK97] or maximum cut algorithms [Tre09] provide a threshold rounding algorithm to round the
second or the last eigenvector of a graph into an integral cut (see Section 7.8 for more details). But
there are no generalizations of these algorithms to higher eigenvectors of graphs.

In the second half of this thesis we design new rounding algorithms that find an integral k-way
partitioning of a graph using the first k& eigenvectors. Our rounding algorithms provide a rigor-
ous justification for several practical spectral algorithms that use these eigenvectors. Furthermore,
using our knowledge of higher eigenvalues we manage to improve Cheeger’s inequality, we design
faster spectral graph algorithms and provide new graph partitioning algorithms with better quality
solutions.

In Section 1.1 we provide an overview of Part I and in Section 1.2 we provide an overview of
Part II.

1.1 New Approximation Algorithms to the Traveling Sales-

man Problem

The Traveling Salesman Problem (TSP) is perhaps the most well known problem in the areas of
approximation algorithms and combinatorial optimization. Today, TSP has applications in planning,

scheduling, manufacturing of microchips, and genome sequencing (see [ABCCO07] for details), but
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CHAPTER 1. INTRODUCTION 4

it has actually been of keen interest since the very first studies in the fields of Combinatorics and
Graph Theory. In the 18" century Euler introduced The Knight’s Tour problem on a chessboard,
and in the 19" century Hamilton and Kirkman studied Hamiltonian paths in various classes of
graphs [Big81].

In the field of computing, many significant developments have been sparked by TSP. Just a
few examples: solving an instance of TSP led to one of the first applications of linear and integer
programming techniques [DFJ54, DFJ59]; one of the first approximation algorithms ever developed
was the 3/2 approximation algorithm of Christofides for TSP [Chr76]; one of the first average case
analyses was the work of Karp on TSP [Kar77, Kar79]. TSP was also one of the first problems
proved to be NP-complete [Kar72].

In an instance of TSP we are given a set V of n cities with their pairwise symmetric distances. The
goal is to find the shortest tour that visits each city at least once. It is NP-hard to approximate TSP
with a factor better than 185/184 [Lam12]. Christofides designed a 3/2 approximation algorithm for
TSP in 1976 [Chr76], and subsequently no one has succeeded in beating the 3/2 factor despite the
fact that many researchers have tried [Wol80, SW90, BP91, Goe95, CV00, GLS05, BEM10, BC11,
SWvZ12]. Tt remains one of the central open problems in the field of computing. One of the major
achievements of this thesis is the first significant advance in solving this problem in over 35 years

Before describing our ideas, we must first describe previous work on this problem. Observe that
any Hamiltonian cycle is in the intersection of the spanning tree polytope' and the perfect matching
matching polytope of the input graph. It turns out that both of these polytopes are integral and
it is easy to optimize any function over them (see Subsection 2.4.2 for background). So the main
question is how to optimize a cost function on both of these polytopes simultaneously.

Researchers have employed two general approaches in attacking TSP or an important variant,
Asymmetric TSP [Chr76, FGMS82, Bla02, GLS05, KLSS05, FS07].

i) Start with a minimum cost connected subgraph, i.e., a minimum cost spanning tree, and then

add edges and make it Eulerian.

ii) Start with a Eulerian subgraph, i.e., a minimum cost cycle cover, then add edges while preserving

the Eulerian-ness until it becomes connected.

We say a subgraph is Eulerian if the degree of each vertex is even and we say a subgraph is connected
if it includes a spanning tree. There are two general approaches that researches employed in attacking
TSP [Chr76, FGMS82]:

Again, these are the main two approaches people have applied to TSP. For example, the Christofides

3/2 approximation algorithm uses approach (i).

1If we want to be precise, a Hamiltonian cycle is in the 1-tree polytope, where a 1-tree is a union of a spanning
tree and a single other edge.
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CHAPTER 1. INTRODUCTION )

1.1.1 Owur Contributions

All of our new approximation algorithms for different variants of TSP are examples of approach (i),
and from this point forward our discussion will be restricted to approach (i). Since the matching
polytope is integral, there is an efficient algorithm that for any given connected subgraph finds the
minimum cost Fulerian augmentation of that subgraph, i.e., the minimum cost set of edges to make
it Eulerian. But the cost of the Eulerian augmentation strongly depends on the structure of the
connected subgraph that we choose in the first step. The main new ingredient of our works is a new
method to round a fractional solution of the Linear Programming relaxation of TSP into a random
spanning tree. We show that a tree chosen from such a distribution preserves many properties
of the fractional solution with high probability. Consequently, we can argue that the cost of the
Eulerian augmentation corresponding to that tree is significantly smaller than the cost of a Eulerian
augmentation of an arbitrary minimum spanning tree.

Next, we describe a brief outline of our method that rounds any feasible solution of the LP
relaxation of TSP into a random spanning tree. We call this method, the rounding by sampling
method. First, we interpret an optimal solution of the LP relaxation as a convex combination of
the extreme point solutions of an integral polytope - in the case of TSP, a convex combination of
the integral spanning trees of the input graph. This convex combination defines a distribution over
extreme points. We then sample an extreme point from the underlying distribution and augment it
into an integral solution of the problem.

Our main idea is to choose a convex combination of extreme points that has the mazimum
entropy. Intuitively, we avoid imposing any additional structure by keeping the combinatorial struc-
ture intact while maximizing the uncertainty. We use the following convex program to compute the

maximum entropy distribution:

max Z —pr log(pr)

T
ZpT = Ze Ve € E,
T>e

pr >0 vT.

In the above program, z represents a fractional point inside the spanning tree polytope, and pr
represents the probability of selecting an extreme point of the spanning tree polytope, which in this
case is a spanning tree 7. We prove that the optimizer of this program can be interpreted as a
weighted uniform distribution on spanning trees (see Section 3.1 for details), and that it can be
approximated efficiently (see Subsection 3.1.2).

In summary, our machinery implies that a fractional solution of the LP relaxation of TSP can be
efficiently written as a random spanning tree distribution. This allows us to use many properties of

the random spanning tree distributions that have been studied for decades by mathematicians (see
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CHAPTER 1. INTRODUCTION 6

Algorithm pab6l | sib35 | sil032

Christofides 1.21 1.24 1.07
Rounding by Sampling 1.09 1.05 1.003
Lin-Kernighan Heuristic | 1.009 | 1.0007 | 1.0008

Table 1.1.1

Section 2.8 and Section 2.9 for more details). For example, we can show that, with high probability,
at least 1/3 of the vertices of a tree sampled from this distribution are even.

We have applied the above machinery to various classes of problems including the Traveling
Salesman Problem [AGM 10, OSS11], the Online Stochastic Matching Problem [MOS11], and the
Minimum Strongly Connected Subgraph Problem [LOS12]. As a simple inspiring example, in Sub-
section 1.1.2 we describe a simple algorithm as an application of the rounding by sampling method
to the online stochastic matching problem. Next, we explain the main results that we will provide

in Part I.

Symmetric TSP: In a joint work with Saberi and Singh [OSS11], we designed a 3/2 — e approxi-
mation algorithm for TSP on graphic metrics, breaking the 3/2 barrier of Christofides [Chr76] where
€ > 0 is a universal constant. Graphic metrics are the cost functions corresponding to the shortest
path metric of an unweighted graph (see Section 2.1 for more details).

Our algorithm is very simple to describe: it chooses a random spanning tree based on the
solution of the LP relaxation using the rounding by sampling method. Then it adds the minimum
cost matching on the odd degree vertices of the tree (see Algorithm 9).

Our analysis, on the other hand, is sophisticated. It builds on properties of uniform spanning
tree distributions Section 2.8 and polygon representation of near minimum cuts Section 2.7. Very
recently, Borcea, Branden and Liggett [BBL09] used tools from complex geometry and proved that
strongly Rayleigh measures that are a generalization of uniform spanning tree measures satisfy the
strongest forms of negative dependence and are closed under certain operations Section 2.9. These
properties are one of the fundamental parts of our analysis. As a byproduct of our results, we show
new properties of near minimum cuts of any graph in Section 3.2, and new properties of random
spanning tree distributions in Section 3.3.

Although we only prove that our algorithm beats Christofides’ 3/2 approximation algorithm on
graphic metrics, we conjecture that its approximation factor is strictly better than 3/2 in the worst
case. We also compared our algorithm with Christofides’ algorithm and one of the best heuristics
for TSP, namely the Lin-Kernighan Heuristic on several of the test cases of the public TSP library,
TSPLIB2. The result of the comparison is shown in Table 1.1.1. Each column label is the name
of a test case of TSPLIB. Each entry of the table represents the ratio of the cost of the solution

computed by an algorithm with respect to the cost of the optimum solution of the LP relaxation.

2The test cases can be downloaded from http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html.
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Observe that our algorithm performs significantly better than Christofides’ algorithm but it cannot
beat the Lin-Kernighan Heuristic. One explanation is that the heuristics usually implement the best

of many ideas.

Asymmetric Traveling Salesman Problem (ATSP): ATSP is a generalization of TSP in
which the distances between the vertices need not be symmetric. In a joint work with Asadpour,
Goemans, Madry and Saberi [AGM™10], we designed an O(logn/ loglogn) approximation algorithm
for ATSP, breaking the O(logn) barrier developed in 1982 [FGMS82]. The algorithm is very similar
to our algorithm for the TSP that we described above. The main difference is in the computation of
the minimum cost Eulerian augmentation. In this case, the minimum cost Eulerian augmentation
of a given spanning tree can be computed efficiently by solving a minimum cost flow problem (see
Algorithm 6 for details). Also, in a joint work with Saberi [OS11], we managed to design the first
constant factor approximation algorithm ATSP on planar or bounded-genus graphs.

Part T of this thesis is organized as follows. In Chapter 2 we provide background on convex opti-
mization, matroids, linear programming relaxations, structure of minimum cuts and near minimum
cuts, properties of random spanning trees and strongly Rayleigh measures. Chapter 3 is specifically
organized to provide new machineries developed in this part of the thesis that we expect to see in
several applications in the future. We describe the rounding by sampling method in Section 3.1,
new properties of near minimum cuts in Section 3.2, and new properties of random spanning trees in
Section 3.3. We provide our O(log n/loglogn) approximation algorithm for ATSP in Chapter 4 and
our constant factor approximation for planar ATSP in Chapter 5. Finally, in Chapter 6 we provide

our 3/2 — e approximation algorithm for graphic TSP.

1.1.2 Rounding by Sampling and Online Stochastic Matching Problem

The goal of this section is to provide a simple and inspiring application of the rounding by sampling
method in a very different context. We design a very simple algorithm for the Online Stochastic
Matching Problem that beats the previous algorithm Feldman et al. [FMMMO09]. The result of this
section is based on a joint work with Vahideh Manshadi and Amin Saberi [MOS11].

The online stochastic matching problem proposed by Feldman et al. [FMMMO09] as a model of
display ad allocation. We are given a bipartite graph G(A, B, E'); where B represent one side of
the graph corresponds to a fixed set of n bins and A represent the other side which is a set of n
possible ball types. At each time step 1,2,...,n a ball of type a € A is chosen independently at
random (with replacement). The algorithm can assign this ball to at most one of the empty bins
that are adjacent to it; each bin can be matched to at most one ball. The goal of the algorithm is
to maximize the expected number of non-empty bins at time n.

We compare the expected size of the matching computed by an algorithm to the optimum offline

solution, the expected size of the maximum matching of the revealed graph at time n. Given the
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sequence of arrived balls w = (a1, as, . . ., ay), one can compute the optimum allocation in polynomial
time by solving a maximum matching problem. Let f,, : E — {0,1} be the indicator function of
edges that are used in the optimum allocation given w.

Let OPT(w) = (1, f,,) be the size of the maximum matching and ALG(w) be the size of a
matching computed by an online algorithm ALG. The competitive ratio of ALG is defined as w.
turns out that the algorithms that we study in this section ALG(w) and OPT(w) are concentrated
around their expected values, therefore the above competitive ratio is fairly robust. Feldman, Mehta,
Mirrokni and Muthukrishnan [FMMMO09] designed an algorithm with competitive ratio of 0.67 for
the online stochastic matching problem. In this section we use the rounding by sampling method to
design a very simple algorithm with competitive ratio of 0.68.

Our algorithm crucially uses the optimum offline solution for making decisions. For any edge e
let f(e) := E[f.(e)]. Also, let us abuse the notation and use f(b) :==3_,. , »er f(a: D).

It turns out that f is in the matching polytope of G, i.e., the vector z where z. = f(e) is a

feasible solution of the following linear program.

Z Zap <1 Va € A,

b:(a,b)eE

> zp <1 WhEB, (1.1.1)
a:(a,b)eEE
2e >0 Vee E.

Fact 1.1.1. The optimum offline solution f is in the matching polytope of G.

Proof. Givenw and a € A, let N, (a) be the number of balls of type a in w. Clearly Zb:(%b)eE fuwl(a,b) <
Ny (a). Taking expectations from both sides show that }-,. , yep f(a,b) < 1. where we used the
fact that each ball type is sampled once in expectation. On the other hand, since in any instance of
the problem any bin y can be matched to at most one ball, > ., yep f(a,b) < 1. So, f(.) is in the
matching polytope of G. O

Since the matching polytope is integral, f(.) can be written as a convex combination of bipartite
matchings of G (see Section 2.2 for background on polytopes and extreme point solutions). Therefore,
using standard algorithmic versions of Caratheodory’s theorem (see e.g. [GLS93, Theorem 6.5.11])
we can decompose a f(.) into a convex combination of polynomially many bipartite matchings in

polynomial time. More specifically, we obtain the following:

Lemma 1.1.2. It is possible to efficiently and explicitly construct (and sample from) a distribution

1 on the set of matchings in G such that

Priep le € M] = f(e), Ve € E.
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Algorithm.

Our algorithm has some similarities with the online algorithm that Feldman et al. [FMMMO09]
proposed. Both algorithms start by computing two matchings M; and My offline; When the first
ball of type a arrives it will be allocated to the bin matched to a in M7, and when the second ball
arrives, we will allocate it via Ms. If the corresponding bins are already full, we drop the ball. Note
that the probability that there are more than two balls of each type a in the sequence of arrivals is
very small.

The main difference is in the construction of M7, Ms. Roughly speaking, one would like that
My, My are disjoint and |My|,|Mz| is as large as possible. So, if G has two disjoint maximum
matchings one can try to find them and use them in the algorithm. But the main difficulty is when
G does not have two disjoint maximum matching. Feldman et al. find M; and My by carefully
decomposing the solution of a maximum 2-flow of G into two disjoint matchings. They have to go
into an extensive case analysis to adjust the size of these matchings. Here, we use the rounding by
sampling method to choose Mj, M. Recall that we have written f as a distribution of matchings
p. First note that Eyrey [[M]] = >, f(e) = E[OPT]. So any sample from p is as large as OPT
in expectation. To make sure that M;, My share the least number of edges we just sample two

matchings independently from p. The details of the final algorithm is described below.

Algorithm 1 The Online Stochastic Matching Algorithm

Offline Phase:
Compute the fractional matching f, and the distribution p using [GLS93, Theorem 6.5.11].
Sample two matchings My and My from p independently; set My (Mz) to be the first (second)
priority matching.

Online Phase:
When the first ball of type a arrives, allocate it through the first priority matching, M;.
When a ball of type a arrives for the second time, allocate it through the second priority matching,
M.

We prove the following theorem.

Theorem 1.1.3. The competitive ratio of Algorithm 1 is at least 0.684.

Analysis.

Throughout the analysis we drop the terms of O(1/n). Let X}, be the random variable indicating the
event that bin b is matched with a ball during the run of the algorithm. We analyze the competitive
ratio of the algorithm by lower bounding E [X}] /f(b) for all b € B,

For b € B,a € A we abuse notation and use M (b) := {a} if (a,b) € My, and if b is not saturated
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in M;, we let My(b) := 0; similarly we define Ma(b). Given M; and M, E[X,|M;, Ms] can be
computed similar to [FMMMO09, Section 4.2.2],

0 if My (b) = My(b) =0
1—1/e if My(b) # 0, My(b) = My(b)
E[Xy | My, Mol =~ 1 —1/e  if My(b) # 0, Ma(b) =0 (1.1.2)
1—2/e if My(b) =0, Ma(b) # 0
(1—2/e® if Mi(b) # 0, Ma(b) # 0, My(b) # Ma(D).

Let us describe the fourth case, say Mj(b) = 0, Ma(b) = a for some a € A: in this case b is matched
if and only if at least two balls of type a arrive. Let N, (a) be the number of balls of type a in the

arriving sequence w. Then,

E[X, | My(b) = 0, Ma(b) =a] =P[Ny(a) > 2] = 1-P[N,(a)=0]—P[N,(a)=1]

where we dropped a term of O(1/n) in the RHS.
For a bin b € B let 6(b) be the set of edges adjacent to b. Since we choose M7, Ms independently

at random,
E[X)] = (1-1/e) >  P[M(b)=a] -P[My(b) =a or Ma(b) = 0]
(a,b)€s(b)
+(1=2/e) > P[My(b) =0]-P[Ma(b) = d]
(a,b)ed(b)
+(1—2/€?) > P[M,(b) = a] - P [My(b) = d']

(a,b),(a’,b)€d(b),a#a’

= (1=1/e) D fle) (1= fO)+ fe)+ (1 —=2/e) Y fle)(1—f(b)

ecd(b) ecs(b)
+(1-2/e*) > fle
e,e'€5(b)
e#e’
= f(0)2=3/e) = f(O)* (1 +2/e* =3/e) = (/e —2/¢*) Y f(e)?

€4(b)

where in the second inequality we used Lemma 1.1.2, in the last equality we used ). 5(b) f(e) = f(b).
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It remains to prove a lower bound the RHS of the above equation. We show,

Zeeﬁ(b) f62
o

E [X]
f(®)

Let us first fix f; and find the minimum of the LHS in terms of f,. For any f3, the LHS is minimized

=(2-3/e) - (1+2/e* —=3/e)fy — (1/e —2/e?) > 0.684 (1.1.3)

when >~ 54 f2 is maximized. Consider any k edges (ay,b), ..., (ax,b).

k k k
> flaib) <P [ZNw(ai) > 1] =1-P [ZNw(ai) = o] =1-(1—k/n)"=1-1/e"
i=1 i=1 i=1

For example, it follows that max.es() f(e) < min{f(b),1—1/e}. With the above constraint, it is easy
to see that the LHS of (1.1.3) is minimized when f, = 1, otherwise we may add a dummy ball type
a € A, and connect it to b by an edge e = (a,b) with very small probability, f(e) = ¢, and see that
this only decreases the value of LHS. If f(b) = 1, then by the above equation }_ ¢ f(e)? <0.463.
Plugging this into (1.1.3) completes the proof of Theorem 1.1.3.

1.2 New Analysis of Spectral Graph Algorithms through Higher

Eigenvalues

Spectral graph algorithms are simple heuristics that explore the structure of a graph using eigenvalues
and eigenvectors of the adjacency matrix of the graph or any of its normalizations like the Laplacian
or the normalized Laplacian matrix. These algorithms are widely used in practice because they
typically run in near linear time, provide high quality solutions, and with the aid of a linear algebra
library are very simple to implement.

In practical applications spectral graph algorithms, like a strong hammer, have been used to
attack problems in a variety of areas including Image Segmentation [SM00, YGS02, YS03, BJ03,
TMO06], data clustering [NJW02, BH03], community detection [DM05, WS05, SC10] and VLSI design
[CSZ94, AKY95]. Although spectral graph algorithms are very simple to implement, they are non-
trivial and interesting; and although these algorithms are widely used in practice, we still do not

have a rigorous justification for their performance.

1.2.1 Spectral Clustering Algorithm

Let us describe an application of spectral graph algorithms in data clustering. Clustering is one
of the fundamental primitives in machine learning and data analysis with a variety of applications
in information retrieval, pattern recognition, recommendation systems, etc. Suppose we have a set
of data points that we want to cluster (see Figure 1.2.1). Suppose the distance between the data

points represents their similarity, i.e., two points are more similar if they get closer to each other. A
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Figure 1.2.1: A natural clustering of the left points divide them into a group of points on the outer
circle and a group on the inner circle. But, it is quite unlikely that a Heuristic like kmeans finds
this clustering. Instead, if we map the vertices based on spectral embedding the points on the outer
circle will map to the blue point on the right and the points on the inner circle map to the red point.
Now we can find the natural clustering using kmeans.

natural clustering of the points in the example of Figure 1.2.1 divides the points into two parts as
we have shown in this figure. However, it is quite unlikely that a heuristic like kmeans recovers this
natural clustering. Recall that kmeans is a clustering heuristic where we map a set of points into k
sets such that each point is mapped to the set with the closest mean.

Data clustering may be modeled as a graph partitioning problem, where one models each of the
data points as a vertex of a graph G = (V, E) and the weight of an edge connecting two vertices
represents the similarity of the corresponding data points. There are many ways to define the graph

G; for example, G' can be a complete graph where for any two vertices u,v € V,
w(u, v) o exp(— [|xu — x4 |* /0?) (1.2.1)

where we used x,,X, to denote the coordinates of the points corresponding to u,v and ¢ > 0 is a
free parameter. To take another example, one can let G be an unweighted graph where there is an
edge between two vertices u,v if and only if ||x, — x,|| < € for some threshold € > 0.

Once we construct a weighted graph, we can use the spectral graph clustering algorithm to par-
tition the vertices. First we compute multiple eigenfunctions of a normalization of the adjacency
matrix of the graph, called the normalized Laplacian matrix £ = I — D~Y2AD~1/2 where I is
the identity matrix, D is the diagonal matrix of vertex degrees, and A is the adjacency matrix.
Say fi, f2,-.., fr are the eigenfunctions of £ corresponding to the first k eigenvalues. The spectral
embedding of G is the function F' : V — R¥ where for any v € V' F(v) := (f1(v), f2(v), ..., fx(v))
(see Section 8.1 for the properties of spectral embedding). We embed the vertices to a new space
using F'(.) and then we run the kmeans on the spectral embedding and we return its output (the
details of the algorithm is described in Algorithm 2). For the example of Figure 1.2.1, the spectral

embedding maps the points of the outer circle close to each other and likewise those of the inner
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circle. Therefore, using the eigenfunctions we managed to change the basis and make the task of

clustering significantly easier for kmeans.

Algorithm 2 Spectral Graph Clustering Algorithm

Input: A graph G = (V, E), and a weight function w: E — R4, k > 2.

Output: A k-partitioning of V.
Let £ = I—D~'/2AD~1/2 be the normalized Laplacian where for any u,v € V, A(u,v) = w(u,v).
Let f1, fa,..., fx : V. — R be an orthonormal set of functions corresponding to the first k£ eigen-
values of L.
Let F: V — R* where for any v € V, F(v) := (fi1(v),..., fe(v)). be the spectral embedding.
Run k-means on the vectors F'(v)/ || F(v)|| for all v € V' and return its output.

The spectral clustering algorithm that we just described is one of the fundamental tools in data
clustering. An enormous number of articles apply this idea to cluster images, movies, music, web-
pages, etc. We can intuit that the reason people previously used eigenfunctions in this algorithm
is that eigenfunctions can be seen as the optimizers of a continuous relaxation of the graph k-
partitioning problem (see Subsection 7.7.1 for more details). We refer interested readers to a recent

survey by Luxburg [L.ux07] for more information.

1.2.2 Spectral Graph Algorithms in Theory

Spectral graph algorithms are one of the fundamental tools in theoretical computer science. From a
very high level point of view, they relate combinatorial properties of graphs to the algebraic properties
of matrices. For example, they relate properties of cuts to the eigenvalues of adjacency matrix or
the Laplacian matrix of the graph (see Subsection 1.2.4 at the end of this section for an inspiring
example). This relation is one of the key insights in various areas of theory including approximation
algorithms [ST96, Kel04, ABS10], probability theory and the analysis of random walks [SJ89, JSV04],
construction of error-correcting codes [Spi96], and complexity theory [RVWO00, Rei05].

To the best of our knowledge, all of the classical analyses of spectral graph algorithms only exploit
the first or last two eigenvalues of graphs and relate them to the properties of cuts [AM85, Alo86,
AK97, Tre09]?. Roughly speaking, a classical spectral algorithm works as follows: first we map the
vertices of G to a line using an eigenfunction of £, then we try several possibilities for cutting the
line into two pieces and we choose the best cut that we find. Such algorithms are limited because
they only exploit one dimensional mapping of a graph.

Let us be more specific and describe Cheeger’s inequality, which is one of the most influential
results in the field of spectral graph theory. A basic fact in algebraic graph theory is that the number

of connected components in any undirected graph is equal to the multiplicity of the eigenvalue 0 in

3We remark that in some random /semi-random models there are results that use matrix perturbation theory and
multiple eigenvectors, but here I do not have any assumption on the structure of the graphs there are examples
of spectral algorithms for random or semi-random graphs that use use matrix perturbation theory and multiple
eigenvectors, see e.g., [McS01], but here we do not have any prior assumption on the structure of the graphs.
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the normalized Laplacian matrix of the graph. In particular, a graph is disconnected if and only if
the second eigenvalue of the normalized Laplacian matrix, Ao, is zero. Cheeger’s inequality provides
an ”approximate” version of the latter fact.

Let us first provide a robust version of connectivity. There are several combinatorial measures
for the quality of a multiway partitioning of a graph including diameter, k-center, k-median, con-
ductance, etc. Kannan, Vempala and Vetta [KVV04] show that several of these measures fail to
capture the natural clustering in simple examples. They also argue that conductance is one of the
best objective functions for measuring the quality of a cluster. For a set S C V', the conductance of

S, #(S) is the following ratio:

o5) = 202

where vol(S) is the summation of the degree of vertices of S. The conductance of G,

WD = s Bl 2 )
is the minimum conductance among all sets that have at most half of the total volume. Observe that
for any graph G, 0 < ¢(G) < 1. Furthermore, if ¢(G) = 0, there is a cut (S, S) such that |E(S, )| <
vol(S),vol(S), so we can say G is almost disconnected (see Section 7.7 for more background on the
conductance).
Cheeger’s inequality for graphs [AMS85, Alo86] states that a graph is almost disconnected if and

only if the second smallest eigenvalue of L, As, is close to 0. Quantitatively, for any graph G,

A2/2 < ¢(G) < /2Xs.

Observe the close relation between an algebraic quantity of normalized Laplacian, A2, and a com-
binatorial property of GG, namely the conductance of G. We will provide a detailed proof of this
inequality in Section 7.8.

Cheeger’s inequality has significant applications in graph partitioning [ST96, KVV04], explicit
construction of expander graphs [JM85, HLW06, Leel2], approximate counting [SJ89, JSV04], and
image segmentation [SMO00]. The proof of Cheeger’s inequality gives a simple, nearly linear time
algorithm (the spectral partitioning algorithm) that finds cuts with nearly-minimal conductance.
Given an eigenfunction f5 of Ay, the algorithm finds the best threshold cut. That is the cut separating
the vertices where fo(v) < t, for the best threshold ¢ (see Algorithm 10 for details). The spectral
partitioning algorithm is widely used in practice for its efficiency and the high quality of solutions
that it provides [Sim91, HL.92, BS93].

Let us summarize the above discussion. Spectral graph algorithms, like strong hammers, have
been used in a variety of problems in practice because they are fast, simple to implement, and provide

high quality solutions. On the other hand, spectral graph algorithms are one of the fundamental

www.manaraa.com



CHAPTER 1. INTRODUCTION 15

tools in theory. Although more eigenvalues and eigenfunctions provide better quality solutions in
practice [AKY95], theoretical analyses can only justify and analyze the algorithms that use the

second or the last eigenfunction.

1.2.3 Owur Contribution

Our main goal in the second part of this thesis is to close this gap. We will understand higher
eigenvalues of graphs, provide tools to handle them and control them, and of course we will design
new spectral algorithms with our knowledge. Here is a summary of our contribution. We will analyze
several spectral graph algorithms using higher eigenvalues and eigenfunctions. As a consequence of
this we can provide a rigorous justification for the spectral graph clustering algorithms and we can
provide new ideas to improve this algorithm. We also provide faster clustering algorithms and several
new ideas for designing graph clustering algorithms.

Our main machinery in controlling higher eigenvalues of graphs is the same spectral embedding
function that has been used by practitioners for many years. In Section 8.1 we prove several impor-
tant properties of this embedding like isotropy, spreading and the energy and we use these properties
throughout Part II.

Now, let us provide a more detailed list of our contribution. We use A1 < XAy < ... < A, to

denote the eigenvalues of £. We use p(k) to denote the k-way conductance constant,
k) = i Si)-
p(k) disjoinItn.IS‘I} ..... S 1%?& $(5i)
Higher Order Cheeger’s Inequality. In a joint work with Lee and Trevisan [LOT12], we prove
the first generalization of Cheeger’s inequality to higher eigenvalues of a graph. We show that the

vertices of any graph can be partitioned into k£ subsets each defining a sparse cut, if and only if Ay

is close to 0. Quantitatively, for any k > 2,

Ae/2 < p(k) < O(K*)/ M.

Compared to the classical analyses of spectral graph algorithm, our analysis uses high dimensional
embedding of graphs, namely the spectral embedding. We also use several of recent developments in
high dimensional geometry on random partitioning of metric spaces (see Section 7.9 for background).

Our result provides a rigorous justification for the spectral clustering algorithm that we described
in Subsection 1.2.1. In particular, our theorem shows that the spectral graph clustering algorithm
finds a “good” k-partitioning of a given graph if and only if the k-th smallest eigenvalue of the
normalized Laplacian matrix is close to zero. Using our machinery we justify the folklore belief
that the number of clusters, k, in the spectral clustering algorithm must be chosen based on the

largest gap between eigenvalues (see Section 10.3). Our proof also justifies the application of kmeans
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Figure 1.2.2: The set of data points in the top figure is from Jianbo Shi’s website on data clustering,
http://www.cis.upenn.edu/~jshi/software/demol.html. The goal is to find a coloring of these
points with 4 colors, red, blue, green and yellow such that the points in each cluster have the same
color. We run the spectral graph clustering algorithm on a complete graph G where the weight of
each edge is computed by (1.2.1) for ¢ := 0.05 max,, , ||X, — X,||. The left figure shows the output of
Algorithm 2, and the right figure shows the output of the modified spectral clustering, Algorithm 3,
where we randomly project the points to a 2 dimensional space and then we use the kmeans Heuristic.

heuristic in the last step of spectral clustering for the graphs where there is a large gap between
successive eigenvalues.

Our analysis provides several new theoretical tools. The first is a new way of upper bounding
higher eigenvalues of graphs by defining a smooth localization of the spectral embedding function (see
Subsection 10.2.1 for more details). The second is a new type of dimension reduction that bypasses
the O(logn) barrier in the well-known dimension reduction of Johnson and Lindenstrauss [JL84].
Specifically, we study dimension reductions from a &k dimensional space to an O(log k) dimensional
space and we show that it preserves several properties of spectral embedding (see Section 8.2).

We also provide new ideas to improve the quality of the spectral graph clustering algorithm. Our
analysis suggests randomly projecting the points of the spectral embedding to an O(log k) dimen-
sional space using independently chosen Gaussian vectors and then applying the kmeans algorithm
to the new space. In Figure 1.2.2 we show that in some data clustering examples this idea can
help obtain better quality solutions, but we do not know if this idea always improves the quality of

clustering in practice. We refer to Section 10.6 for details of our algorithm.
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Algorithm 3 Spectral Clustering Algorithm with Dimension Reduction

Input: A graph G = (V, E), and a weight function w: E — Ry, k > 2.

Output: A k-partitioning of V.
Let £L=I—D7'2AD~'/2 be the normalized Laplacian where for any u,v € V', A(u,v) = w(u,v).
Let f1, fa,..., fx : V. — R be an orthonormal set of functions corresponding to the first k£ eigen-
values of L.
Let F: V — R* where for any v € V, F(v) := (fi1(v),..., fe(v)). be the spectral embedding.
Choose | = O(log(k)) random & dimensional Gaussian vectors (i, .. ., ¢; and let

F</U) - \%(<F(’L’),C]7>,<F(U),C2>,...,<F(’U),Cl>)

Run k-means on the vectors I'(v)/ |T'(v)|| for all v € V and return its output.

Improved Cheeger Inequality through Higher Order Spectral Gap. In a joint work with
Kwok, Lau, Lee, and Trevisan [KLL"13], we strengthen the right side of Cheeger’s inequality and

we show that for any k > 2,
A2

VA&

Consequently, we can characterize graphs for which the right side of the Cheeger’s inequality is

¢(G) < O(k)

tight; in all these graphs we must have approximate multiplicity of eigenvalues, i.e., Ay = Ao for all
constant k.

Our result describes why the spectral partitioning algorithm performs significantly better than
the worst case guarantee of Cheeger’s inequality in practical applications. If for a constant k, A\ is
bounded away from 0 for some graph G, then the spectral partitioning algorithm provides a constant
factor approximation for the sparsest cut problem. In practical instances of image segmentation,
there are usually only a few outstanding objects in the image, and thus Ag is bounded away from 1
for a constant k& [SMO0O].

Almost Optimal Local Graph Clustering. A local graph algorithm is one that finds a solution
around a given vertex of the graph by looking only at the local neighborhood of a vertex. In a joint
work with Trevisan [OT12], we design a local graph clustering algorithm with almost the same
guarantee as the spectral partitioning algorithm. This is the first sublinear (in the size of the input)
time algorithm with almost the same guarantee as the Cheeger’s inequality.

Another advantage of our algorithm is that if there are both large and small sets with near-
optimal conductance, our algorithm is more likely to find the smaller sets. Indeed, for any given
target size k, our local algorithm can find sets of size approximately k& with near-minimal sparsity
around the starting vertex. Small communities generally contain more interesting and substantial
information than large communities.

Our analysis provides new properties of simple random walks on graphs. We show that for any
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set S C V a simple ¢ step random walk started at a uniformly chosen vertex of S remains in S with
probability at least (1 —¢(5))* (see Section 8.3 for more details). This has been also used to provide
improved lower bounds on the mizing time of reversible random walks. Our analysis builds on the
recent works of Andersen, Morris and Peres [MP03, AP09].

Universal Bounds on Laplacian Eigenvalues. In a joint work with Lyons [LO12], we use the
spectral embedding to provide a unifying framework for lower bounding all the eigenvalues of the
normalized Laplacian matrix of graphs. For example, we show that for any graph G with n vertices
A < 1 —Q(k3/n?), this upper bound improves to 1 — Q(k?/n?) if the graph is regular (note that
there is no dependency to the degree). We generalize these results and we provide sharp bounds on
the eigenvalues of various classes of graphs including vertex transitive graphs, and infinite graphs in
terms of specific graph parameters like the volume growth.

Using these bounds we design a slightly sub-exponential time algorithm that beats the O(\/m
approximation algorithm of [ARV09] for the sparsest cut. Our work introduces the spectral embed-
ding as a new tool in analyzing the reversible Markov Chains. We have used our machinery to
provide (improved) upper bounds on the return probabilities and mixing time of random walks with
considerably shorter and more direct proofs. Furthermore, building on an earlier work of Lyons
[Lyo0O5a], we design fast local algorithms to approximate the number of spanning trees of massive

graphs.

Partitioning into Expanders There is a basic fact in algebraic graph theory that Ax > 0 if and
only if G has at most k — 1 connected components. In a joint work with Trevisan [OT13] we prove
a robust version of this fact. If Ay > 0, then for some 1 <[ < k—1, V can be partitioned into [ sets
Py, ..., P, such that each P; is a low-conductance set in G and induces a high conductance induced
subgraph. In particular, ¢(P;) < I3V and ¢(G[P)]) = A\ /K%

We design a simple polynomial time spectral algorithm to find such partitioning of G with a
quadratic loss in the inside conductance of P;’s. Unlike the traditional spectral clustering algorithms,
our algorithm does not use higher order eigenfunctions of G. Furthermore, if there is a sufficiently
large gap between Ay and A\g41, more precisely, if A\p11 2 poly(k)/\llc/ * then our algorithm finds a
k partitioning of V into sets Pi,..., P such that the induced subgraph G[P;] has a significantly
larger conductance than the conductance of P; in G. Such a partitioning may represent the best
k clusterings of G. Our algorithm is a simple local search that only uses the Spectral Partitioning
algorithm as a subroutine. We expect to see further applications of this simple algorithm in clustering

applications.

Part II of this thesis is organized as follows. In Chapter 7 we provide background on spectral
graph theory, Laplacian matrix, random walks, eigenfunction computation, conductance, Cheeger’s

inequality and random partitioning of metric spaces. Chapter 8 is specifically organized to provide
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new machineries developed in this part of the thesis that we expect to see in several applications in
the future. We describe our new machinery of spectral embedding and its properties in Section 8.1.
We prove our new dimension reduction framework in Section 8.2, and in Section 8.3 we prove
our improved upper bound on the escape probability of random walks. In Chapter 9 we prove
universal lower bounds on eigenvalues of the normalized Laplacian matrix. We prove our higher
order Cheeger’s inequality in Chapter 10, and our improved Cheeger’s inequality in Chapter 11.
Finally, we design our local graph clustering algorithm in Chapter 12 and our new graph clustering

algorithm in Chapter 13.

1.2.4 An Upper Bound on Graph Diameter based on Laplacian Eigenval-

ues

The goal of this section to provide a simple and inspiring proof of relating combinatorial properties
of graphs to algebraic properties of matrices. We relate the dimeter of a graph to eigenvalues of the
normalized Laplacian matrix. Our proof uses some of the new machineries on higher eigenvalues
that we will develop in this thesis. The result of this section is based on a joint work with Luca
Trevisan [GT12].

Let G = (V, E) be a connected, undirected and unweighted graph, and let d(v) be the degree of
vertex v in G. Let D be the diagonal matrix of vertex degrees and A be the adjacency matrix of G.
Let L := D — A be the Laplacian of G, and let £ := I — D~'/2AD~'/2 be the normalized Laplacian
matrix of G where I is the identity matrix (see Section 7.2 for background and properties of the

Laplacian and the normalized Laplacian matrices). The matrix £ is positive semi-definite. Let
0=M<A<...<A <2

be the eigenvalues of £. For any pair of vertices u,v € G, we define their distance, dist(u,v), to be
the length of the shortest path connecting u to v. The diameter of the graph G is the maximum

distance between all pairs of vertices, i.e.,

diam (@) := maxdist(u, v).

uU,v

Alon and Milman [AMS85] show that if A is the maximum degree of vertices of G, and A is the

second smallest eigenvalue of the Laplacian of GG, then

diam(G) < 2+/2A/Alog, n. (1.2.2)
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Chung [Chu89] improved the above result for regular graphs and show that,

~ | log —Aé 3

diam(G) < "w“

To the best of our knowledge, none of the above results are generalized to higher eigenvalues of
the (normalized) Laplacian matrix of G. The following question is asked by Gil Kalai in a personal
communication [Kall2]. Is it true that for any connected graph G, and any k > 2, diam(G) =
O(klog(n)/Ag). Equation (1.2.2) shows that this question already holds for k& = 2. Therefore,
Kalai’s question can be seen as a generalization of the result of [AMS85] to higher eigenvalues of L.

In this section we answer his question affirmatively and we prove the following theorem

Theorem 1.2.1. For any unweighted, connected graph G, and any k > 2,

< 48klogn'

diam(G) 5y
k

Observe that the above theorem relates a combinatorial property of G to an algebraic property of
the normalized Laplacian matrix. This is because the eigenvalues are the zeros of the characteristic
polynomial of the determinant of £ — AI (see Section 7.1 for background).

Our proof uses the easy direction of our higher order Cheeger inequalities that we prove in
Chapter 10. For aset S C V, let E(S,S) := {{u,v} : [{u,v} N'S| = 1} be the set of edges with in
the cut (3, S). Let vol(S) := Y, . d(v) be the volume of the set S, and let

_IBS)
9(5) min{vol(S), vol(S)}

be the conductance of S. Let p(k) be the worst conductance of any & disjoint subsets of V, i.e.,

plk) = max 6(S).

= min
disjoint S1,54,...,Sk 1<i<k
In Theorem 10.1.1 we will show that for any graph G and any k > 2,

A
5 < 0(k) < OV A (1.2.3)
We will use the left side of the above inequality, a.k.a. easy direction of higher order Cheeger

inequality, to prove Theorem 1.2.1.

Proof. We construct k disjoint sets S1, ..., Sk such that for each 1 <14 < k, ¢(S;) < O(klogn/ diam(G)),
and then we use (1.2.3) to prove the theorem.

First, we find k + 1 vertices vy, ..., vx such that the distance between each pair of the vertices is
at least diam(G)/2k. We can do that by taking the vertices vg and vy to be at distance diam(G).
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Then, we consider a shortest path connecting vy to v and take equally spaced vertices on that path.
For a set S C V, and radius r > 0 let

B(S,r) := {v: mindist(v,u) < r}

uesS

be the set of vertices at distance at most = from the set S. If S = {v} is a single vertex, we abuse
notation and use B(v,r) to denote the ball of radius r around v. For each ¢ = 0,. .., k, consider the
ball of radius diam(G)/6k centered at v;, and note that all these balls are disjoint. Therefore, at most
one of them can have a volume of at least vol(V')/2. Remove that ball from consideration, if present.
So, maybe after renaming, we have k vertices vy, ..., v such that the balls of radius diam(G)/6k
around them, B(vq,diam(G)/6k),. .., B(vg,diam(G)/6k), are all disjoint and all contain at most a
mass of vol(V)/2.

The next claim shows that for any vertex v; there exists a radius r; < diam(G)/6k such that
d(B(v, 1)) < 24klogn/ diam(G).

Claim 1.2.2. For any vertez v € V and r > 0, if vol(B(v,r)) < vol(V)/2, then for some 0 <i <,
¢(B(v,1)) = 4logn/r.

Proof. First observe that for any set S C V, with vol(S) < vol(V)/2,
vol(B(S,1)) = vol(S) + vol(N(S)) > vol(S) + |E(S, S)| = vol(S)(1 + ¢(S)) (1.2.4)

where the inequality follows from the fact that each edge {u,v} € E(S,S) has exactly one endpoint
in N(S), and the last equality follows from the fact that vol(S) < vol(V)/2. Now, since B(v,r) <
vol(V')/2, by repeated application of (1.2.4) we get,

r—1

vol(B(v,r)) > vol(B(v,r —1))(1 + ¢(B(v,r—=1))) > ... > H(l + ¢(B(v,1)))

exp (% 2¢<B<v,z‘>>> -
=0

where the last inequality uses the fact that ¢(S) < 1 for any set S C V. Since G is unweighted,

Y

vol(B(v,r)) < vol(V) < n?. Therefore, by taking logarithm from both sides of the above inequality

we get,
r—1
> ¢(B(v, 1)) < 2log(vol(B(v, 7)) < 4logn.
i=0
Therefore, there exists ¢ < r such that ¢(B(v,i)) < 4logn/r. O

Now, for each 1 < i < k, let S; := B(v;,r;). Since r; < diam(G)/6k, S1,..., Sk are disjoint.
Furthermore, by the above claim ¢(S;) < 24klogn/ diam(G). Therefore, p(k) < 24klogn/diam(G).
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Finally, using (1.2.3), we get

This completes the proof of Theorem 1.2.1.
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Background

Throughout this part we assume G = (V, E) with n := |V| vertices. Unless otherwise specified, we
allow G to have parallel edges, so we think of E as a multi-set of edges. We often assume that G is
an undirected graph and we use e = {u, v} to denote an edge of G. if G is directed we use a = (u,v)
to denote an arc of G. For any undirected graph H we use V(H) to denote the vertex set of H
and E(H) to denote the edge set of H. We use bold lower letters to refer to vectors. For a vector
x € R (resp. x € R4), we use z. (resp. ) to denote the value assigned to an edge e (or an arc

a) of G. For a given function f: A — R, the cost of f is defined as follows:
o(f) =D c(e)f(e).

For a set S C E, we define

F(8) =Y fle).

eesS
We use the same notation for a function defined on the edge set A of an directed graph.

For a set S C V we use

B
&
i

{{u,v} € E:u,v € S},
{{u,v} € E:ue S,ve S}

(o9
—

n
~

I

If S = {v} for a vertex v € V, we may abuse the notation and use 6(v) instead. If G = (V, A) is

directed, we use
§T(S) = {(u,v) € A:ue S,ve S} (9):={(w,veS:ueS,veS}

For disjoint S,T C V we use E(S,T) := {{u,v} :u e S,ve T}

24

www.manharaa.com




CHAPTER 2. BACKGROUND 25

2.1 The Traveling Salesman Problem

In an instance of the traveling salesman problem (TSP) we are given a set of cities (V) with a non-

negative cost function c¢: V xV — R, that satisfies the triangle inequality, i.e., for any u,v,w € V,
c(u,v) < c(u,w) + c(w,v).

The goal is to find the shortest tour that visits each vertex at least once. A sequence of vertices
V1,Va,. ..,V I8 & tour when {vy,...,v} = V. More precisely, our goal is to find a tour vy,...,v,
such that

c(v1,v2) + c(ve,v3) + ... + c(vp—1,Vn) + c(Vn,v1)

is as small as possible.

Often this problem is formulated such that each vertex must be visited ezactly once. It is easy
two see that the two definitions are indeed equivalent. If we find a tour that visits each vertex at
least once, then we can shortcut the tour and avoid visiting a vertex more than once. By triangle
inequality the cost of the new tour can only be smaller than the original one.

TSP is proved to be NP-complete since the Hamiltonian Circuit problem is NP-complete. If we
do not assume c(., .) satisfies the triangle inequality and we are asked to find a tour that visits each
vertex exactly once, then the problem does not admit any approximation algorithm because of a
simple reduction to the Hamiltonian circuit problem [SG76].

Next we describe several important variants of TSP all of them known to be NP-hard, and we

recall the best known approximation algorithms for each of them prior to our works.

Symmetric TSP. Symmetric TSP (STSP) is the most well-known variant of TSP where we assume
that the cost function is symmetric, i.e., for all u,v € V, ¢(u,v) = ¢(v,u). After a long line of
work [Eng99, BS00, PV06, Lam12] the best known lower bound for approximating TSP is by

Lampis [Lam12] who show that it is NP-hard to approximate TSP with a factor better than

185
184"

and is due to Christofides [Chr76]. It is conjectured that there is a % approximation algorithm
for TSP but this conjecture is proved only in very special cases [AGG11, BSvdSS11, MS11].

Although many researchers tried to improve the 3/2 factor during the last 30 years, no-one

The best known approximation algorithm for TSP has an approximation factor of 3/2

is ever succeeded. It remains a central open problem in the field of computing to design an

approximation algorithm for TSP that beats the Christofides’ 3/2 approximation factor.

Asymmetric TSP. Asymmetric TSP (ATSP) is the most general variant of TSP where any cost
function that is not necessarily symmetric but satisfies the triangle inequality is allowed. The
first approximation algorithm for ATSP is due to Frieze, Galbiati and Maffioli [FGM8&2] who
obtained a log(n) approximation algorithm. Although many researchers tried, after a long line
of work [B1402, KLSS05, FS07] the approximation factor is only improved to 0.66 log(n) and it
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remained an important open problem to break the ©(log(n)) barrier. On the hardness side, the

best known inapproximability result is % due to Papadimitriou and Vempala [BS00, PV06].

Euclidean TSP. Euclidean TSP is a special case where it is assumed that the vertices are mapped
to a plane and the cost function is simply the Euclidean distance between the vertices. Pa-
padimitriou proved that even Euclidean TSP is an NP-complete problem [Pap77]. Unlike the
general version of TSP, there is no inapproximability result for Euclidean TSP. Indeed, Arora
[Aro96] and Mitchell [Mit99] independently designed a polynomial time approximation scheme
(PTAS) for Eulidean TSP. We recall that a PTAS is an algorithm that for any given € > 0 in

a polynomial time in |V finds a solution that is within (1 + €) factor of the optimum.

Graphic TSP. Graphic TSP is a natural special case of TSP where we are given an underlying
connected graph Gy = (V, Ey), and for all u,v € V, c¢(u,v) is the length of the shortest path
that connects u to v. Equivalently, we can reformulate graphic TSP as follows: we are given
an unweighted graph, and we want to find an Eulerian connected subgraph with the minimum
number of edges. We recall that a graph is Eulerian if every vertex has an even degree.
Similarly, one can also define graphic ATSP problem where G is directed graph and c(u,v) is
the length of the shortest directed path from u to v.

Observe that if G is a allowed to be weighted then we would recover the general version of
symmetric TSP. This is because for a given instance of symmetric TSP one can construct a

complete graph Gy where the weight of each edge {u,v} is ¢(u,v).

The importance of graphic TSP is that all of the known hard instances of TSP are essentially
instances of graphic TSP (e.g., in the Lampis [Lam12] construction, although the graph Gy is
weighted, the weight of the edges are between 1 and 2). So, it seems graphic TSP capture the
main difficulty of the problem. Also, similar to TSP, graphic TSP is APX-hard, meaning that
under the P # NP conjecture there is no PTAS for graphic TSP. Prior to our work the best
known approximation algorithm for graphic TSP is also the 3/2 approximation algorithm of
Christofides [Chr76].

Planar TSP. Planar TSP is a special case of TSP where the cost function is the shortest path
completion metric of a weighted planar graph. In other words, we are given a weighted planar
graph Gy = (V, Ey) and for all pair of vertices u,v € V, ¢(u, v) is the weight of the shortest path
from v to v in Gy. Polynomial time approximation schemes have been found for planar TSP
[GKP95, AGKT98, Kle05], and bounded genus TSP [DHMO07]. Similarly, Planar ATSP is a
special case of AT'SP where the cost function is the shortest path metric of a weighted directed
planar graph. Prior to our works nothing better than O(log(n)) approximation algorithm was
known for Planar ATSP.
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2.2 Linear and Convex Programming

In this short section we overview useful properties of Linear and Convex programs. We refer the
interested readers to [GLS93, BV06] for more information.

A polytope is an intersection of a number of half-planes. A polytope is bounded if there is a ball
of finite radius that contains it. A polytope is finite if it is an intersection of a finite number of
half-planes.

An extreme point solution of a linear program, or a vertex of a polytope is a feasible point x

such that x cannot be written as a linear combination of two other points of the program.

Theorem 2.2.1 (Carathéodory’s theorem). Any feasible point x of a linear program over R™ can

be written as a convex combination of at most n + 1 extreme point solutions.

Algorithmic versions of the above theorem can be found in [GLS93, Thm 6.5.11], that is there is
a polynomial time algorithm that, for any given feasible solution x, writes x as a convex combination
of at most n + 1 extreme point solutions.

Consider the following generic convex program over points x € R™.

minimize fy(x)
subject to fi(x) <0 V1<i<m
Ax =D

where fo,..., fin are convex functions, A € R™ *". We say a feasible solution x is in the relative
interior of the above program if for all 1 <14 < m, f;(x) < 0. We say a convex program satisfies the
Slater’s condition if there is a feasible solution in the relative interior of the program. If a convex
program satisfies the Slater’s condition then it satisfies the strong duality, i.e., the primal optimum
is equal to the Lagrangian dual (see [BV06, Section 5.2.3] for more information).

Next, we show that if x is a vector in the relative interior of a finite bounded polytope P, then
X can be written as a convex combination of all vertices of P such that each vertex has a positive
coefficient. Let y be the summation of all vertices of P. Since P is finite and bounded y is well
defined. Since x is in the relative interior of P, for a sufficiently small ¢ > 0, x’ = x — ey € P. Now
we can write x' = Y% a;x; as a convex combination of vertices of P, then write x = ey +37_| a;x;
as a convex combination of all vertices of P.

Many of the linear or convex programs that we study in this thesis have an exponential or even
infinite number of constraints. To efficiently find a feasible or an extreme point solution of these
programs we need to provide a separating hyperplane oracle and use the ellipsoid algorithm. Let

P C R” be an arbitrary bounded polytope. Let R > 0 such that for a point yg € R”,

P C{y:|ly —yoll <R}
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Also, let 7 > 0 such that for a point xg € P, {x € P: ||x — x¢|| < r} C P. A separating hyperplane
oracle is a deterministic algorithm that for any given point y € R™ either decides y € P, or finds a
vector a € R™ such that for all x € P,

(a,y) < (a,x).

The following theorem follows from Khachiyan’s ellipsoid algorithm.

Theorem 2.2.2. If the separating hyperplane oracle runs in in time polynomial in n and log(R/7),

then the ellipsoid algorithm finds a feasible solution of P in time polynomial in n and log(R/T).

Note that the running time is independent of the number of constraints, or the number of faces
of P.

2.3 Matroids and Spanning trees

For a ground set of elements £ and () # T C 2¥, M = (E,T) is called a matroid if

1. For any A € Z and B C A we have B € Z. In other words, Z is a downward closed family of
subsets of E.

2. For any A, B € 7 such that |A| < |B| there exists an element e € B — A such that AU{e} € Z.

This property is called the extension property of matroids.

A well-known example of matroids is the graphical matroid defined on a graph G where E is the
set of edges of GG, and Z is the subsets of E that does not include a cycle.

The rank function of a matroid M assigns to every S C E a number
rank(S) := max{|A|: A€ Z,A C S}.

If M is a graphic matroid of a graph G = (V, E) then for any S C E, rank(S) = |V|—# components(S).
In other words, rank(S) is the number of edges in the maximum spanning forest of S.

A set A € 7 is called a base of a matroid M if S has the largest number of elements among
all sets in Z, i.e., |A| = max{|B|: B € Z}. For example, if G is a connected graph, and M is the
graphic matroid on G, then the bases of M are exactly the spanning trees of G.

The following lemma will be useful later.

Lemma 2.3.1. Suppose we have assigned weights w : E — R such that w(e1) < ... < w(em).
If w(er) > w(egs1) for some 1 < k < m, then any mazimum weight base of M has exactly

rank{e; ..., ex} elements from {ey,... er}.
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Proof. Let S = {ey,...,ex}. Let B be a maximum weight base of M such that |B N S| < rank(S).
Let A = BnNS. Since A € Z, by the extension property, there is an element ¢ € S such that
AU {e} € T (note that e ¢ B). Now, again by the extension property we can extend AU {e} by
adding elements from B and obtain a base B’. By construction, {e} = B’ — B, and for some ¢’ € E,
{¢/} = B— B . Since BNS C B'NS, we must have ¢’ ¢ S. Therefore, by the definition of S,

We > Wer, and we get w(B’) > w(B) which is a contradiction. O

2.4 Linear Programming Relaxation

As we elaborated in Section 1.1 our approach for solving the Traveling salesman problem is by
rounding an optimal solution to the linear programming (LP) relaxation of the problem. In this
section we overview this relaxation and several other LP relaxation of related problems.

The following linear program first formulated by Dantzig, Fulkerson and Johnson [DFJ54] is

known as subtour elimination polytope or Held-Karp LP relaxation (see also [HK70]).

minimize Z (U, V)T {0}

{u,w}
subject to Z Ty} = 2 vSCV
ueS,ves (2.4.1)
Zx{u’v} =2 VueV
veV
Tfuwy =0 Yu,veV.

Observe that an optimal integral tour that visits each vertex exactly once (i.e., a Hamiltonian circuit)
is a feasible solution to the above LP. In particular, each vertex is adjacent to exactly two edges
of the tour and each cut separates the endpoints of at least two edges of the tour. Therefore, the
solution of above LP provides a lower bound on the cost of the optimum tour.

We use G = (V, E,x) to denote the fractional support graph corresponding to a feasible solution
X, l.e., E={e:x. > 0}. For an edge e € E we use z. to denote the fraction of e in G. In this sense,
the degree of a vertex in G is the sum of the fractions of edges incident to that vertex. Therefore,

G is fractionally 2-regular and 2-edge connected. We use ¢(x(E")) = > . p c(e) - ze. In particular,

we use ¢(x) = c(x(E)).
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Next we describe the LP relaxation of asymmetric TSP.

minimize g c(u, V) (y0)

u,vEV
subject to Z T(upw) = 1 vSCV
uES,WES (2.4.2)
Z T(uw) = Z T(pu) =1 VueV
vev veV
T(uw) =0 Vu,veV.

Note that in (2.4.1) we have a variable zy, . for each un-ordered pair of vertices, but in the above
program we have x(, ) for each ordered pair. Again a directed Hamiltonian circuit is a feasible
solution to the above program, so the program provides a lower bound on the cost of the optimum
tour of ATSP. Similarly, we can define G = (V| A, x) as the support graph, where in this case G is
a directed graph.

Both of LP (2.4.1) and (2.4.2) have an exponential number of constraints. An optimum solution
can be computed in polynomial-time either by the ellipsoid algorithm or by reformulating the above
programs as LPs with polynomially-bounded size. Note that in both cases a separating hyperplane
oracle needs to find a global minimum cut in the fractional graph G = (V, E,x) or G = (V, 4, x).

The global minimum cut can be found by an almost linear time algorithm of Karger [Kar00].

2.4.1 Integrality Gap

Since STSP and ATSP are NP-complete we do not expect that the optimum solution of (2.4.1)
and (2.4.2) provide an exact estimate of the cost of the optimum tour. (as it turns out in many of
the practical applications the value of these LP are very close to the integral optimum [ABCCOT]).
Consequently, an optimum solution x is a fractional vector.

The integrality gap of a family of LP is the supremum of the ratio of the cost of the optimum
integral solution to the cost of the optimum fractional solution of LP. Next, we describe a folklore
example that shows the integrality gap of (2.4.1) is at least 4/3. Consider an infinite family of graphs
illustrated in Figure 2.4.1 where each is an instance of Graphic TSP. It is easy to see that the cost
of the optimum integral tour is at least 4n/3 — 2 and the cost of the optimum fractional solution is

exactly n (the latter is because the cost of each edge is exactly 1). Therefore,

4n/3 -2 4
Integrality Gap (2.4.1) > lim L ==

n—00 n 3’

Wolsey [Wol80] proved a new analysis of Christofides’ 3/2 approximation algorithm [Chr76] and
he show that the integrality gap of (2.4.1) is at most 3/2. It is conjectured that the true value of

the integrality gap is 4/3 but this remained open for several decades. Schalekamp, Williamson and
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Figure 2.4.1: An illustration of the integrality gap example of LP (2.4.1). Each long path contains
exactly n/3 vertices. For each edge e = {u,v}, c¢(u,v) = 1, and the ¢(u,v) is the length of the
shortest path connecting u to v for the remaining pair of vertices. Here, in an optimal solution of
(2.4.1), z, = 1 for solid edges and z, = 1/2 for dashed edges.

van Zuylen [SWvZ12] conjectured the worst-case ratio of (2.4.1) occurs for half-integral fractional
solution, i.e., vectors x where x. is 1/2 or 1 for all of the edges in the support of x, but still we don’t
know the worst case integrality gap of even half-integral solutions. In efforts of better understanding
the Held-Karp relaxation, extreme point solutions of this linear program are intensely studied in the
literature [BP91, CV00, Goe06].

Integrality gap of (2.4.2) is also studied. Prior to our works, the best upper bound is O(log(n))
by the analysis of Frieze et al. [FGMS&2]. But, the best lower bound is only 2 by a recent work
of Charikar, Goemans and Karloff [CGKO06]. Note that compared to TSP, we have a significantly
larger gap between the upper bound and lower bound. It is conjectured that the integrality gap is
a constant. As we describe in Chapter 5 under Conjecture 5.3.2 the integrality gap of (2.4.2) is a

constant.

2.4.2 Integral Polytopes

One can also write an LP relaxation for problems in P. These LPs are typically integral (i.e., their
integrality gap is 1). In other words, any non-integral feasible solution can be written as a convex
combination of two other feasible solutions, so any extreme point solution is an integral vector.

We start by describing the spanning tree polytope. For G = (V, E), Edmonds [Edm70] gave the

following LP relaxation of spanning trees of G.

z(E)=n-—1
z(E(S)) <|S| -1 VS CV (2.4.3)
Ze >0 Vee E.

Edmonds [Edm70] proved that above linear program is exactly the convex-hull of all spanning trees
of graph G, i.e., extreme point solutions of above linear program are exactly the spanning trees of

G. Therefore, above program is known as the spanning tree polytope.
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Figure 2.4.2: Consider the wheel graph shown at left. The right diagram shows an O-join, the red
vertices are the vertices of O and the edges of the O-join are shown in blue.

We made the following simple observation in [AGM*10]

Fact 2.4.1. For any feasible solution x of (2.4.1), z = (1—1/n)x is a feasible solution in the relative
interior of (2.4.3)

Proof. First, observe that

«(5) = (1 - 1/)x(5) = - " St =n -1
On the other hand, for any S C V,
2(B()) = (1 1/npx(E(5)) = =" (St -xsp) = * g1 - 2)
< 15— 1.
So, z is in the relative interior of (2.4.3). O

For a graph G = (V, E) and a set O C V with even number of vertices, an O-join is a multiset
F of edges of E such that in the subgraph (V, F') every vertex of O has an odd degree and every
vertex of V' — O has an even degree. Note that F' can have multiple copies of an edge in F (see
Figure 2.4.2 for an example). We remark that conventionally the term T-join is used, here we would
rather reserve the notation 7" for spanning trees.

Edmonds and Johnson [EJ73] proved the following characterization of the O-join polytope.

Proposition 2.4.2. For any graph G = (V,E) and cost function ¢ : E — Ry, and O C V with

even number of vertices, the minimum weight of an O-join equals the optimum value of the following

linear program.

minimize c(y)
subject to  y(6(5)) >1 VS CV,[SNO| odd (2.4.4)
Ye = 0 Vee E
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Figure 2.5.3: The left graph shows an instance of Graphic TSP. For each pair of vertices u,v € V,
¢(u,v) is the length of the shortest path from u to v. In the right graph we show a possible output of
Algorithm 4. The green edges are the edges of a minimum spanning tree, and the blue dashed edges
are the edges of a minimum cost perfect matching on the odd degree vertices of the tree. Observe
that the cost of the computed solution is 23 while the optimum 16. If we increase the number of
vertices to infinity, then the approximation factor approach 3/2

Note that (2.4.4) is the up-hull of all O-joins of G. We recall that the up-hull of a polytope is

the set of points that are at least as large as some point in the polytope.

2.5 The Christofides’ Algorithm

In this section we describe Christofides’ 3/2 approximation algorithms for symmetric TSP. This
algorithm is one of the first approximation algorithms designed in the field of computing. Because
of the simplicity and elegance of this algorithm, it is taught in many of the introduction to algorithm
courses.

The details of the algorithm is described in Algorithm 4. In Figure 2.5.3 we illustrated an output
of this algorithm in an instance of Graphic TSP.

Algorithm 4 Christofides’ 3/2 approximation algorithm for TSP

Compute a minimum cost spanning tree of the complete graph where cost of each edge {u,v} is
c(u,v).

Compute a minimum cost perfect matching on the odd degree vertices of the spanning tree.
Return the union of the tree and the matching.

Observe that the union of a spanning tree and the matching is a feasible TSP tour, because it
is connected and Eulerian. It is also easy to see that the cost of the solution is at most 3/2 of the
optimum. First, observe that the cost of the spanning tree is always at most the cost of the optimum
tour, because by removing an edge of any Hamiltonian circuit we obtain a spanning tree. On the
other hand, we show for any S C V, where |S| is even, the cost of the minimum matching on the

vertices of S is at most half of the optimum. First observe that by the triangle inequality we can
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Figure 2.6.4: An example of two crossing sets.

shortcut the vertices in V' — .S and obtain a tour of cost at most the optimum that visits each vertex
of S exactly once. This tour defines two disjoint perfect matching on S one of which have cost at
most half of the optimum tour.

Figure 2.5.3 shows that the above analysis is tight and the cost of the solution of the Christofides’
algorithm may be 3/2 of the optimum solution even in instances of Graphic TSP. The above analysis
shows that the cost of the tour obtained in Algorithm 4 is at most 3/2 of the optimum integral tour,
but it does not bound the integrality gap of LP (2.4.1). Next, we describe an argument of Wolsey
[Wol80] that shows the cost of tour in the output is at most 3/2 of the optimum value of LP (2.4.1).

Let x be an optimum solution of (2.4.1). Let z = (1 —1/n)x. Then, by Fact 2.4.1, z is inside the
LP (2.4.3). So, the cost of the minimum spanning tree is at least ¢(z) < ¢(x). It remains to upper
bound the cost of the matching by ¢(x)/2. Let y = x/2. By (2.4.1) for each cut (S, S), y(5(S)) > 1.
So y is inside the LP (2.4.4), for any set O C V, and in particular, for the set O being the odd
degree vertices of the chosen minimum spanning tree. By Proposition 2.4.2 the cost of the minimum
O-join on G is at most ¢(y) = ¢(x)/2, So, by the triangle inequality the cost of the minimum cost

perfect matching is at most ¢(x)/2.

2.6 Structure of Minimum Cuts

In this section we overview the structure of minimum cuts of any A-edge connected undirected graph
G. All of the statements hold for fractional graphs as well but for simplicity of notation we assume
G is integral, but we allow G to have parallel edges. Before describing the structure of minimum
cuts we discuss general properties of any family of cuts in G.

Two subsets A, B C V are crossing if AN B,A— B,B — A, AU B are all non-empty (see Fig-
ure 2.6.4). Two cuts (A4, A) and (B, B) are crossing if A, B are crossing. A cut (A, A) is a trivial
cut if |A] =1 or |[A] = 1.

Definition 2.6.1 (Atom). For a collection F of cuts, the atoms of F are the members of a partition
P of the vertex set V such that

e no cut of F divides any of the atoms of F, and

e P is the coarsest partition with this property.
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We say an atom is singleton if it is a set of a single vertex of V.

See Figure 2.6.5 for example of atoms of a family of cuts. We say a cut class is trivial if it has

two atoms and one of them is a singleton.

Definition 2.6.2 (Cross Graph). For a collection F of cuts of a graph G, cross graph G is a graph
on vertex set F that has an edge between two cuts in F if they cross. Each connected component of

G is called a cut class, we use C to denote a single cut class.

For example, if F is the set of three cuts that are shown by dashed lines in Figure 2.6.5, then G
has just one connected component.

For a cut class C we use 9(C) to denote the set of atoms of C. We say a cut (A, A) is non-proper,
if it separates an atom of its cut class from the rest of the atoms, and it is proper otherwise. Observe
that a cut class C has a non-proper cut if and only if it has exactly one cut, or equivalently two
atoms. This is because no cut crosses a non-proper cut. Since a cut class with 3 atoms can only
have non-proper cuts, and no two non-proper cuts cross, we cannot have any cut class with 3 atoms.

In the rest of this section we prove several properties of cut classes and their atoms. Our first

lemma relates atoms in different cut classes. The proof is based on [Ben97, Lemma 4.1.7].

Lemma 2.6.3 ([Ben97, Lemma 4.1.7]). For any two distinct cut classes C1,Ca of a collection of
cuts F, there are unique atoms A* € ¥(C1) and B* € ¥(Cs) such that A* UB* =V. So,

i) For any B € ¥(C2) such that B # B*, we have B C A*.
it) For any A € ¥(C1) such that A # A*, we have A C B*.
iii) For any A € ¢(C1), B € ¥(C2), A does not cross B.

i) If there are A € ¥(C1), B € ¥(Ca) such that A = B, then exactly one of C1,Cs is non-proper.

So, we cannot have three atoms Ay, As, Az in three distinct cut classes such that A1 = Ay = As.

Proof. Consider a cut (C,C) € C;, and form two subsets of the cuts (D, D) € Cy depending on

whether D or D C C, or D or D C C. Since no cut of Cy crosses a cut of Cy, all cuts of Cy are put

into one of these two sets. Furthermore, since no cut from one of the subsets of above type may

cross a cut from the other set and since the cuts in Cy form a connected component, one of the two

sets must be empty. So, (perhaps after renaming) assume that for all (D, D) € Cq, we have D C C.
The above argument holds for any (C,C) € C;. So,

U pc N c

(D,D)€eCs (C,C)ecy

But by the definitions of atoms the LHS is the complement of an atom B* in ¢)(C3), and the RHS
is an atom A* in 9(Cy). These two atoms satisfy the lemma’s conclusion. We prove the uniqueness

below.
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Conclusions (i), (ii) simply follow from the fact that the atoms of any cut class form a partition
of the vertex set V. Conclusion (iii) follows from (i) and (ii).

Now, let us prove (iv). Since A = B we must either have B # B* or A # A*. Without loss of
generality assume B # B*. Since by (i) B C A*, A = A*. So, B = A* and by (i) C2 must have
exactly two atoms.

Finally, let us prove the uniqueness of A*, B*. Suppose there are another pair of atoms A € ¢(Cy)
and B € (Cz) such that AUB =V and A # A*. Since A C B*, we must also have B # B*. Since
by (ii) C; # Ca, at least one of C1,Cs, say C; is non-proper and has an atom A’ # A, A*. But then
by (ii) A’ C B* and A’ C B which is a contradiction. O

In the following lemma we upper bound the number of atoms of any family of cut classes.

Corollary 2.6.4. For any k cut classes Cy,...,Cx of any collection F of cuts, we can find a family

P of atoms such that atoms in P are pairwise disjoint and

k
Pl > =2(k = 1)+ > [#(Ci)]-
i=1
Proof. Without loss of generality, we assume [1(C;)| > 2 for all 1 < ¢ < k. So, by Lemma 2.6.3 for
any ¢ # j and any A € ¥(C;), B € ¥(C;) we must have A # B. Also, let | = Zle [(C;)].
By Lemma 2.6.3 for any ¢ > 2 there is an atom B} € ¥(C;) that is a complement of an atom
A} € 9(C1). Note that A7 and A} are not necessarily different atoms of Cy. Let

Q=9(C1) U(¥(C2) — B3) U... U ((Ck) — Bp).

By part (i) of Lemma 2.6.3 for any ¢ > 2, and any B € ¥(C;) N Q, B C A¥. So, by part (iii) of
Lemma 2.6.3 for any A, B € @, we have AN B # ( if and only if A C B or B C A. Furthermore,
for any atom A € @ that is a superset of an atom B € ¥(C;) N Q, A is also a superset of any other
atoms in ¥(C;) N Q. To obtain a set of pairwise disjoint atoms we only need to remove supersets of
any atom of Q). But, we have to do this removal carefully such that we can count the number of
remaining atoms.

By above argument, for any cut class C; (i > 2) there is a chain of atoms A; 1 C A;2 C A;3... C
Af such that they are supersets of all atoms of (C;) N @, and these are the only supersets of atoms
of ¥(C;) N Q. Now, we define

PZQ—Az’l—A&l—...—Ak,l.

First, observe that

k
IPIZ Q= (k—1)==2(k-1) + Z |9 (Ci)l

www.manharaa.com




CHAPTER 2. BACKGROUND 37

Figure 2.6.5: Left graph shows a connected family of three crossing cuts. This particular family has
6 atoms that are represented by 6 circles. In the right graph we identify the set of the vertices in
each of the 6 atoms and we remove the loops.

On the other hand, for any ¢ > 2, any atom A;; in the chain A;, A;2,... is removed by A; ;_1.
Therefore, for any A, B in P we must have A ¢ B and B ¢ A. Since P C @ atoms of P are pairwise
disjoint. O

2.6.1 Properties of Minimum Cuts

Next, we discuss specific properties of structure of minimum cuts. For A C V, (A4, A) is a minimum
cut of G, if [§(A)| = A. It turns out that if (A, A) and (B, B) are crossing minimum cuts, then the
cuts defined by any of the four sets AN B,A— B,B — A, AU B are also minimum cuts.

Lemma 2.6.5. For any two crossing minimum cuts (A, A), (B, B),
6(AN B)|;[6(A = B)|,[6(B - A)[,[6(AUB)| = A
Proof. Observe that,
2A < [6(ANB)|+6(AUB)| <|6(A)|+ |6(B)| = 2A.

So, |60(AN B)| =|6(AU B)| = A. The other cases can be proved similarly. d

For a partitioning P = {41, Aa,..., A} of vertices in G, let G(P) be the graph obtained by
identifying the vertex set of each part A;, and removing the self-loops afterwards. In particular, for
a cut class C, each vertex of G(1(C)) is an atom of C (see Figure 2.6.5 for an example).

The following lemma characterizes the structure of minimum cuts in a single cut class. The
lemma follows from the work of Dinits, Karzanov and Lomonosov [DKL76] (the proof below is

based on a technical report by Fleiner and Frank [FF09)]).

Lemma 2.6.6 ([DKL76]). Let C denote a cut class of minimum cuts of G. Then G(¢(C)) is a cycle
where between each adjacent pair of vertices there are A/2 parallel edges, and every pair of edges of

the cycle corresponds to a minimum cut of G.
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Proof. The proof essentially follows by repeated applications of Lemma 2.6.5. Let H = G(3(C))
(note that H is also A-edge connected). We say A C V(H) is tight if |6(V(A))] = A. We say a
tight set A is non-trivial if |A| > 2. The next fact follows from the fact that the atoms of C are the

coarsest partition with respect to cuts in C.
Fact 2.6.7. Any non-trivial set A is crossed by a tight set.

First, we show that the degree of each vertex of H is exactly A. For v € V(H), let A be the
smallest tight set containing v. If |A| > 1, there must be a tight set B crossing A such that v € B.
But then AN B is a smaller set containing v, and by Lemma 2.6.5 it is a tight set. So, we must have
|A| =1, and we get |5(v)| = A.

Since each vertex has a degree of A, all we need to show is that each vertex u € V(H) is contained
in at least two tight sets {u,v} and {u,w} for v # w. In the next claim we show that every vertex

is contained in at least one tight set of size 2.

Claim 2.6.8. Let A be a non-trivial tight set containing u. Then, A includes a two element tight

set containing u.

Proof. We prove by induction. If |[A| = 2 we are already done. So assume |A| > 3. Let B be a tight
set containing u that crosses A. If |[AN B| > 2, then we are done by induction. If |AN B| = 1, then
since A — B is a non-trivial set there is also a non-trivial tight set B’ that contains u and crosses
A — B. Now, either B’ C A, or B’ crosses A. In either case B’, or B'N A gives a smaller non-trivial

tight set containing u, and we are done by induction. O

It remains to show that a vertex w is contained in two tight sets of size 2. By the above claim
let {u,v} be a tight set. Then, there is a non-trivial tight set, A containing u that crosses {u,v}.

So v ¢ A. By above lemma A includes a two element tight set, {u,w}. Since v ¢ A, v # w. O

The above lemma nicely characterizes any proper cut class of minimum cuts: we can place the
atoms around a cycle such that each two non-consecutive edges of the cycle is a minimum cut in that
cut class. Consequently, if C is a proper cut class of minimum cuts with k& atoms, then it contains

exactly k(k — 3)/2 minimum cuts.

2.6.2 The Cactus Representation

Next, we discuss the representation of different cut classes of minimum cuts as represented by a
cactus graph [DKL76] and then the representation of different cut classes of an arbitrary collection

of cuts in a tree hierarchy [Ben95].

Definition 2.6.9 (Cactus Graph). A cactus graph is a graph with no cut edges in which no two

simple cycles share an edge.
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Figure 2.6.6: The cactus representation of a star graph

Observe that one can assign a tree to any cactus K; the vertices of the tree are the cycles of K
and there is an edge between two vertices if corresponding cycles share a vertex. Also, the minimum
cut of any cactus is exactly 2.

The cactus representation of G consists of a partition P of vertices of G and a cactus graph K
whose vertices may have either an element of P or the empty set, each element of P appearing exactly
once. Each minimum cut of GG corresponds to a minimum cut of the cactus and each minimum cut
of the cactus correspond to a minimum cut of G. There are many ways to construct a cactus

representation of the minimum cuts of G. The following construction is based on [Ben97, BG0S].

Lemma 2.6.10 ([BGO08, Prop 24]). Let F be the collection of minimum cuts of an unweighted A-
edge connected graph G. For each cut class C, let P; be the partition of V corresponding to ¢¥(C).
Then there exists a cactus K = (N, E') and a mapping f : V — N such that

1. K has no cycle of length 3,

2. there is a 1-to-1 correspondence between the connected components C of the cross graph and
the cycles C; of K,

3. the removal of the edges of C; = w1 —usg ... —u;—uy break K into k (depending on i) connected
components, Ay,..., A C N where uj € Aj such that P, = {f~1(4;): 1 <j <l},

4. for each cut (B, B) € F,there is a unique cycle C; in K and two edges of C; which are non-

consecutive if the cycle is not of length 2, whose removal partitions N into U and N —U where

B=fYU).

Proof. The proof is a simple application of Lemma 2.6.3 and Lemma 2.6.6. First, if all of the
minimum cuts of G are degree cuts, then the cactus is simply a star with two parallel edges between
the center and any any other vertex. Each vertex of degree A in G is mapped to a distinguished
leaf and all other vertices are mapped to the center (see Figure 2.6.6).

Otherwise, there is a cut class, C with a non-degree cut. Let Ay,..., A; be the atoms of ¢(C) in
the order of vertices in the cycle graph G(¢(C)). For each atom A;, Let G, be the graph obtained
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Figure 2.6.7: The left graph is a 4-edge connected graph. The middle graph shows the cactus
representation of the minimum cuts of the left graph. Observe that each vertex is mapped to
exactly one vertex of the cactus, and 4 vertices of the cactus are empty. Also, each minimum cut
of the cactus, i.e., each cut of of size 2, corresponds to a minimum cut of the left graph. The right
graph shows the tree hierarchy of the minimum cuts of the left graph. We used 1,2 to denote the
set {3,4,...,8}, similarly, T = {1} Observe that each vertex of left graph is mapped to one vertex
of each cycle of the cactus. Three atoms of three different cut classes are mapped to each vertex of
the middle cycle.

by identifying the vertices in A;. Find a cactus representation K; of G; recursively. We also assume
that K1,..., K; have disjoint vertex sets. Now, we are ready to construct K. First, we add a cycle,
C, of length |¢(C)|. Then, we identify the i-th vertex of the cycle with a vertex of K(G;) where A;
is mapped. This vertex will be an empty vertex. So, the vertices of A; are only mapped to the K;
subgraph of K. This completes the construction

Conclusion 1 holds since no cut-class has 3 atoms. By Lemma 2.6.3 for every other cut class
C' # C, there is an atom A; of C such that all but one of the atoms of C’ are subsets of A;. So,
the cuts in C’ are mapped to the subgraph K; of K. So contracting the vertices of atoms in the
recursive construction preserve all of the cuts in F—C. Conclusions 2 and 3 hold by the construction.
Conclusion 4 holds by Lemma 2.6.6. O

See Figure 2.6.7 for an example of the cactus representation.
Benczur, in his thesis [Ben97], studied representations of any collection of cuts. He slightly
changed the cactus representation and extended the above construction to any collection of cuts

[Ben97, Theorem 4.1.6]. The following representation is called tree hierarchy.

Theorem 2.6.11 ([Ben97]). Let F be a collection of cuts of G, and let P; be the partition of V
corresponding to ¥ (C). There exists a cactus K = (N, E") such that
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1. K has no cycle of length 3.

2. there is a 1-to-1 correspondence between the cut classes of F and the cycles of K such that the

atoms of each cut class C are mapped to the vertices of a unique cycle C;,

3. all pairs of atoms A € ¥(C) and B € ¥(C") with C # C’ that are mapped to a coinciding vertex
of the cactus satisfy AUB =1V.

See Figure 2.6.7 for an example of the tree hierarchy. Observe that the only difference with the
construction of cactus representation in the proof of Lemma 2.6.10 is that here the vertices of G are
mapped to exactly one vertex of each cycle of K.

There is a simple way to construct a tree hierarchy from Lemma 2.6.10. All we need to do is to
give a partitioning of V(G) for each cycle of K. For a cycle of length I, this partitioning is exactly
the pre-images of Ay, ..., A; as defined in conclusion 3 of Lemma 2.6.10. The proof of above theorem
follows from Lemma 2.6.3. Recall that Lemma 2.6.3 hold for any collection of cuts. The construction
is very similar to Lemma 2.6.10 except in this case the ordering of atoms in each cycle is arbitrary.

In this thesis we only work with tree hierarchy representation of cuts. Because of the generality

of above theorem we can use it when we discuss the structure of near minimum cuts in Section 2.7.

2.6.3 Properties of Tree Hierarchy and Cactus Representation

Before concluding this section we prove some general properties of and tree hierarchy of any collection
of cuts.
The following lemma provides an upper bound on the number of cut classes with 7 number of

atoms.

Corollary 2.6.12. The cut classes of any collection F of cuts satisfy the following properties.
i) For any T > 4, the number of cut classes with at least T atoms is at most n/(t — 2).

i1) The number of all cut classes is at most 2n — 3.

ii1) The number of atoms of all cut classes is at most 5n.

Proof. Let C1,Cs...,Cx be cut classes with at least 7 atoms, By definition,

k

STR(C) 2 ko

i=1

Applying Corollary 2.6.4 to these cut classes, there is a P of mutually disjoint atoms of them such
that

k
|P| > —2(k—1)+ Y [¥(Ci)l.

i=1
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So,
k-1 <|P|+2k<n+2k,

where we used the fact that the atoms in P are pairwise disjoint. So, k& < n/(7 — 2). This proves
part (i).

Next we prove part (ii). We prove it by induction. If n = 2, then the claim obviously holds.
First, assume that F has no crossing cuts, i.e., every cut class is proper. Fix a vertex v € V. Let
S be a family of subsets of V such that for any cut (A, A) € F, if v ¢ A, the A € S and otherwise
A € S. Tt follows that S is a laminar family of subsets of V, i.e., no two sets in S cross. So,
|F| = |S] < 2n — 3 and we are done.

Now, assume that F has a proper cut class C with atoms Aj, ..., Ax. For 1 <i <k, let G; be
the graph where A; is contracted. By Lemma 2.6.3 every cut in F — C is in exactly one G;. By the
induction hypothesis the number of cut classes of each G; is at most 2(|4;| + 1) — 3. So, the number

of cut classes of G is at most

E k
14+ (214 —1) <) 2/4)| —-3< 2n -3,
i=1 i=1
where the first inequality follows by the assumption that C is a proper cut class and k£ > 4, and the
second inequality follows by the fact that atoms of C form a partition of V.
It remains to prove part (iii). Suppose there are k cut classes with at least 4 atoms. By
Corollary 2.6.4,

Y= Y WO+ Y 2<n+2k+202n-k) =5n.

¢ C:|p(C)|24 C:lp(C)|=2
where the last inequality follows by part (ii) that the number of all cut classes is at most 2n. O

Lemma 2.6.13. For any collection F of cuts of a graph G, in all (except possibly one) of the cut

classes there is an atom which is a subset of at least n/2 of the vertices of G.

Proof. Let C be a cut class such that for any A € (C), |A| < n/2. If such a cut class does not exist,
we are already done. By Lemma 2.6.3 for any cut class C’ # C there exists an atom A* € ¢(C) and
B* € ¢(C’) such that A* U B* = |V|. Since |A*| < n/2, |B*| > n/2 and we are done. d

Lemma 2.6.14. Let C1,Co,...,Coryo be cut classes of a collection F of cuts of G for 1 > 1. Then

there exists a cut class C; that has an atom with at least min{n/2 +1,2n/3} vertices.
Proof. For a cut class C let

C) = Al.
f(C) Arg%)I |
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Let C; be a cut class that maximizes f(.) and if there are multiple maximizers, let C; be one with
maximum number of atoms. Also, let A; € ¥(C1) be an atom of C; with maximum number of
vertices.

By Lemma 2.6.3, for any 2 < ¢ < 2142 there is an atom A; € ¢(C;) such that for some B; € ¥(Cy),
A; U B; = V. First, we show that B; = A; for all 2 < i < 2] + 2. By definition of A;,

Ail = n— B| = |A4].

By definition of Cy, both of the above inequalities must be equality, so |A;| = |A;1| and C; must be
a non-proper cut class. But then f(C;) > f(C1) and |¢(C;)| > |¢(C1)| which is in contradiction with
the definition of C;. So, B; = Aj.

Next, we show that if f(C1) < 2n/3, then for any 4, j > 2 such that ¢ # j we either have A; C A;
or A; C A;. Since A;, A; C Ay, by part (iii) of Lemma 2.6.3, A;, A; do not cross. So, if A; € A;
and A; € A; we must have A; U A; = V. Therefore,

[Ar| = £(C1) > max{|Ai],|[4;]} = [A] + [Ar]/2 = n — |A4] /2.

Therefore, |A1]| > 2n/3 and we are done.

So, perhaps after renaming assume that
Agi40 C Ay C...C Ay C Ay
Next, we show that |Ag;42| > |41 — 21. By part (iv) of Lemma 2.6.3 for any 1 < i < 2] 4 2 either
A; # Ajpq or A; # A;—1. Furthermore, if for 1 < i < 20+ 1, A; = A;41, then one of C;,C;41 has

two atoms and the other one hast at least 4 atoms. But this means that |4;,2] < |A;| — 2. Putting
them together, for any i > 1, either |A; 41| < |A4;| — 1 or |A;42| <|A4;| — 2. So,

[Agppo] <AL —21
But by definition of Ag;1a, A1 U Agjyo = V. Therefore,
|A1| Z n — |A21+2| Z n — |A1| +2l

So |A1] > n/2 + | which completes the proof. d

2.7 Structure of Near Minimum Cuts

In this section we discuss properties of near minimum cuts of a A-edge connected graph. Similar

to the previous section all of our statements hold for fractional graphs as well but for simplicity of
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notations we work with integral graphs.
For n > 0, a cut (A, A) is a (1 + n)-near minimum cut if |§(A)| < (1 +n)A. In the first part of
this section we discuss structure of near minimum cuts for values of 7 < 1/5. In the second part we

characterize larger values of 7.

2.7.1  Structure of (1 +7) near min cuts for small 7

We start by providing some basic lemmas. The following lemma proves a generalization of Lemma 2.6.5

to crossing near minimum cuts.

Lemma 2.7.1. Let (A, A) and (B, B) be two crossing cuts of G and let (A, A) be a (1 +n) near

minimum cut. Then,
max{|6(AN B)l,[6(AU B)|,[6(A = B)[,|6(B — A)[} < [0(B) + nA.
Proof. We prove the lemma only for A N B; the rest of the cases can be proved similarly.
6(ANB)|+[6(AUB)| < [6(A)| +[6(B)| < (1 +n)- A+|0(B)].

Since [6(AUB)| > A, we have [6(ANB)| < |§(B)|+n-A. This completes the proof of the lemma. O
The following lemma is proved in [Ben97]

Lemma 2.7.2 ([Ben97, Lem 5.3.5]). Let (A, A) and (B, B) be two crossing (14 1) near minimum
cuts of G. Then |E(ANB,A—B)| > (1-1)5.

Note that by symmetry it can be derived from the above lemma that
[E(ANB,B—A)| = (1-n)
|[E(AUB,A—-B)|>(1-n)

|[E(AUB,B—A)| = (1-mn)

v | D> wof o >

It turns out the representation of near minimum cuts is more complicated than the cactus
representation. Unfortunately, Lemma 2.6.6 does not naturally extend to near minimum cuts. In
fact, one of our significant contributions is a generalization of Lemma 2.6.6 to the system (1 4 )
near minimum cuts for some absolute constant value of 7 (see Section 3.2). Next, we describe the
polygon representation defined in [Ben95] and then generalized in [BGOS8] to represent the set of

near minimum cuts of each of the cut classes of G.

Definition 2.7.3. The polygon representation of a cut class C possesses the following properties:
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Figure 2.7.8: The left graph shows A 7-edge connected graph. The dashed blue lines show a cut
class C of cuts of value at most 8, i.e., (141/7)-near minimum cuts. The right image shows the
polygon representation of C. The blue lines in the right image are the representing diagonals. This
representation has 8 outside atoms and {1} is the only inside atom. The system of near minimum
cuts corresponding to sets ({2,3},{2,3}),...,({8,9},{8,9}), ({9, 2}, {9, 2}) shows an 8-cycle for the
inside atom {1}.

e A representing polygon is a reqular polygon with a collection of distinguished representing
diagonals, with all polygon-edges and diagonals drawn by straight lines in the plane. These

diagonals divide the polygon into cells.

e Each atom of ¥(C) is mapped to a (different) cell of this polygon; some cells may contain no

atoms.

e No cell has more than one incident polygon edge; each cell incident to the polygon boundary

contains an atom which we call an outside atom. The rest of the atoms are called inside atoms.

e Fach representing diagonal defines a cut, with sides being the union of the atoms contained
by cells on each side of the diagonal; The collection of cuts C is equal to the collection of cuts

defined by representing diagonals.

See Figure 2.7.8 for an example of a polygon representation of a cut class of near minimum cuts.

Benczur [Ben97] show that any cut class of (1 + 1) near minimum cuts for small value of 7

possesses a polygon representation.

Theorem 2.7.4 ([Ben97, Theorem 5.2.2]). If C represents a cut class of (14+n) near minimum cuts

and n < 1/5, then it possesses a polygon representation.
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The proof of above theorem is rather complicated. We refer the interested reader to [Ben97, Ch.
5]. Note that once we have the representation of a single cut class, by Theorem 2.6.11 we can plug it
into the tree hierarchy to represent all near minimum cuts. Observe that if C is a cut class of minimum
cuts then every diagonal of the representing polygon is a representing diagonal. Furthermore, we do
not have any inside atoms. From above theorem for any cut class C of (1 + 1) near minimum cuts
for n < 1/5, the number of cuts in C may be significantly smaller than [¢(C)]| - (|(C)| — 3).

Corollary 2.7.5. For any n < 1/5 the number of cuts in any cut class C of (1 +n) near minimum
cuts is at most [P(C)| - (|¢(C)| — 3).

Stronger forms of above theorem are proved in [NNT94].
Before concluding this part we describe more properties of inside atoms. Benczur [Ben97] sug-
gested a simple combinatorial argument to distinguish between inside atoms and outside atoms. To

describe this argument we first need to define a k-cycle of cuts.

Definition 2.7.6 (Benczur [Ben97, Definition 5.3.1]). We say that k > 4 sets S; C V, for 1 <i <k,
form a k-cycle if

e B, crosses both B;_1 and B;i1;
e BiNB; =0 forj#i—1,i ori+1; and

e Uicici Bi# V.

See Figure 2.7.8 for an example of a 8-cycle. One of the main differences between a collection of
minimum and a collection of near minimum cuts is that minimum cuts do not admit any k-cycle.
Benczur in [Ben97] showed that the collection (1 + 7) near minimum cuts does not have a k-cycle

for k < 1/n-cycle. In particular, 6/5 near minimum cuts do not have any k-cycle for k < 5.

Lemma 2.7.7 (Benczur [Ben97]). For any n < 1, the set of (1 +n) near minimum cuts of G does
not have any k-cycle for k < 1/n.

Proof. The proof is based on [BG08, Lem 22]. Suppose there is a cycle of By,..., By of (1 +1n)
near minimum cuts, and let A =V —[J; <i<k Bi- The following inequality follows from the fact that

Bi,..., By is a k-cycle.
k

k
|6(A)[ + Z 16(Bi N Biy1)] < Z 16(B:)]-

i=1
In any edge that contributes to the LHS also contributes to the RHS. Furthermore, only edges in
E(B; N Bjt+1, A) contribute more than once to the LHS, but these edge contribute exactly twice to
the LHS and the RHS.

Now, we get
k k

A < [8(A)] < S"(8(B)| — 16(B: N Bisn))) < D _((1+m)A — A) = kn.

i=1 i=1
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So, k> 1/n. O

Benczur and Goemans [BG08] show that the set of inside atoms of the polygon representation

of a cut class C are atoms A such that there is a k-cycle that does not intersect

Theorem 2.7.8 ([BGO8, Def 4, Prop 5]). Let C be a collection of (1 + n)-near minimum cuts for
17 <1/5, and A € (C). Then any A € ¢¥(C) is an inside atom iff there exists a k-cycle By, ..., By
such that ACV — Ule B;.

In the example in Figure 2.7.8, {1} is an inside atom. We say k-cycle By, ..., By is for an inside
atom Aif ACV — Ule B;. The following technical lemma also proved in [BG08] will be useful

later.

Lemma 2.7.9 ([BG08, Lem 12]). Let C be a cut class of (1 +n) near minimum cuts of G for
n < 1/5, and let (S,S) € C contain an inside atom A € ¥(C). For any k-cycle By, ..., By for A,
there exists i such that B; C S.

2.7.2 Structure of o near minimum cuts for large «

In this part we discuss the structure of cuts of value at most « times the minimum cut for values of
« that can depend on n. To the best of our knowledge there is no unified representation for values
of @ > 6/5. So, in this part we mainly study the number of these cuts.

We prove the following result due to Karger [Kar93].

Theorem 2.7.10 (Karger [Kar93]). For any A-edge connected graph G = (V,E) and any o > 1

the number of cuts of value at most o - A is at most 4n>®.

Proof. Nash and Williams [NW61] show that any A-edge connected graph contains A /2 edge disjoint
spanning trees. Let T1,...,Ta/2 be A/2 edge disjoint spanning trees of G. Consider any cut (S, S)
of size at most - A. Therefore, the expected number of edges of (S, S) in a uniformly random tree
among T1,...,Tx 2 is at most 2a. Now, by Markov inequality with probability 1/(4a) a uniformly
random tree has at most 2« edges in (S, S).

Now, fix a tree T;, and suppose a set F' of edges of T; are in a cut. We claim that for any F' C T;
this cut is uniquely defined based on edges in F. First, we fix a vertex u on one side of the cut.
Then, for every other vertex v we count the number of edges of F' in the path from u to v. If this
number is even, then v is in the same side of the cut as u, otherwise u is on the other side.

Now we can give a simple procedure to count the number of cuts of size Aa. First we choose a

random spanning tree T; and then we count all cuts that cut at most 2« edges of T;. The number

n—1
pre”

near minimum cuts. So, the number of « - A near minimum cuts is at most

of these cuts is at most 2(",_'). In this way we have counted at least 1/(4c) fraction of all - A
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The above proof is based on [Kar00, Lemma 3.2].

2.8 Random Spanning Trees

Let G = (V, E) be an unweighted graph, and let 7 be the set of all spanning trees of G. For non-
negative weighted A : E — R assigned to the edges of G, a A-random spanning tree distribution is

a distribution p where the probability of each tree T is

Py [T o< I Ae-
eCE

Observe that if Ac =1 for all e € E, then p is exactly the uniform distribution on spanning trees
of G. For rational \.’s, if we replace each edge e with C\. parallel edges (for an appropriate choice
of C), then a uniform spanning tree in the corresponding multigraph gives a A-random spanning
tree of G. Because of this almost all properties of uniform spanning trees naturally generalize to
(A)-random spanning tree distributions. We refer the interested readers to [LP13].

We start this section by stating the The Kirchoefl’s matrix tree theorem (see [Bol02]). The

weighted Laplacian L of G is defined as follows (see Section 7.2 for properties of this matrix).

—Xe €= (u) ’l)) S
L(u,v) = Eeeé({u}) Ae U= (2.8.1)
0 otherwise.

Matrix tree theorem states that for any graph G, Y .1 Ae is equal to the absolute value of

ecT
any cofactor of the weighted Laplacian.

Theorem 2.8.1 (Matrix Tree Theorem). For any graph G any A : E — Ry and any u,v € V.

ST Ae = det(Lu.o) = det'(L).

TeT eeT

where by L, ., we mean the minor of L where the u-th row and v-th column are removed, and by

det’(L) we mean the product of the non-zero eigenvalues of L.

One of the important consequence of above theorem is that it gives an efficient algorithm to
compute the probability that an edge e is in a A-random tree T'. For this purpose, we can evaluate

> rer Heer Ae for both G and G//{e} (in which edge e is contracted) using the matrix tree theorem,

’ )\e/
PleeT]) = %LET/\ (2.8.2)
T 1le'eT e
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Similarly, we can compute the probability that e ¢ T,

ZT}e He’ €T )\5,

ERR D o

(2.8.3)
We remark that an alternative approach for computing PP[e € T is to use the fact that P[e € T
is equal to A, times the effective resistance of e in G treated as an electrical circuit with conductances

of edges given by A (see Subsection 2.8.2 below).

2.8.1 Sampling a »-Random Tree

There is a host of results (see [Gué83, Kul90, CMNIG, Ald90, Bro89, Wil96, KM09] and references
therein) on obtaining polynomial-time algorithms for generating a uniform spanning tree, or a A-
random spanning tree. Almost all of them can be easily modified to allow arbitrary \; however, not
all of them still guarantee a polynomial running time for general A.’s. The problem is that many of
these algorithms are based on running a random walk on G, and if there is an exponential gap (in n)
between A.’s then the mixing time of the random walk can also be exponential in n (see Section 7.4
for background on random walks).

So, in this section we describe an iterative approach similar to [Kul90]. The idea is to order the
edges eq, ..., e, of G arbitrarily and process them one by one, deciding probabilistically whether to
add a given edge to the final tree or to discard it. More precisely, when we process the j-th edge
ej, we decide to add it to a final spanning tree 17" with probability p; being the probability that e;
is in a A-random tree conditioned on the decisions that were made for edges e1,...,e;—; in earlier
iterations. Clearly, this procedure generates a A-random tree, and its running time is polynomial as
long as the computation of the probabilities p; can be done in polynomial time.

To compute these probabilities efficiently we note that, by (2.8.2) p; is easy to compute. Now,

if we choose to include e; in the tree then:

ZT’Bel,eg HeET’ Ae
2rse; Heer Ae

ZT’Sel,EQ HeeT'—e1 Ae
ZT’Bel HeeT’—el Ae

pQZP[62€T|€1ET] =

As one can see, the probability that es € T conditioned on the event that e; € T is equal to the
probability that e is in a A-random tree of a graph obtained from G by contracting the edge e;.
(Note that one can sum up the A’s of the multiple edges formed during the contractions and replace
them with one single edge.) Similarly, if we choose to discard e;, the probability p, is equal to the
probability that ey is in a A-random tree of a graph obtained from G by removing e;. In general,
p; is equal to the probability that e; is included in a A-random tree of a graph obtained from G by
contracting all edges that we have already decided to add to the tree, and deleting all edges that we
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have already decided to discard. But, we can compute all p;’s simply using the matrix tree theorem
and (2.8.2).

2.8.2 Electrical Networks and A-Random Trees

We may view the graph G = (V, E) as an electrical network. For any edge e = (u,v) € E there is a
wire with resistance 1/A., or equivalently with conductance A, between u and v.
We adopt a similar notation as in [SS11] to describe the electrical networks. Consider an arbitrary

orientation of the edges of G. Define the matrix B € RIZIXIVI as follows,

1 if v is e’s head
B(e,v) =< —1 ifwvise’s tail

0 otherwise.

Also, let A = RIFIXIEl be the diagonal matrix where A(e,e) = A.. It follows from (2.8.1) that
L= BTAB.

Let g : V — Ry be a function of currents that we injected at the vertices of G, and let i(e) be the
current induced in an edge e in the direction of the current and ¢(v) be the potential at a vertex v.
We say i(.) and ¢(.) define a valid electrical flow if they satisfy the Kirchhoff’s law and the Ohm’s
law. By Kirchhoff’s law the sum of the currents entering a a vertex u is equal to the current that

injected at u, i.e., for any vertex u,

or in a matrix form,

By Ohm’s Law, the current flow in an edge is equal to the potential difference across its endpoints

times the conductance of that edge, for any edge e = (v, u)
i(e) = Ae(Ble, v)o(v) + Ble, u)d(u)),

or in a matrix form,
1 =AB¢

Combining these facts,
g=BTi=BTAB¢ = L¢.

Note that the Laplacian matrix L is singular, the first eigenvalue is always zero and the first
eigenfunction is the constant function (see Section 7.1 for background on eigenvalues and eigen-

functions). If G is connected, then all other eigenvalues of L are positive. If g L ker(L) then we
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have
Lig = ¢, (2.8.4)

where LT is the pseudo-inverse of L (see Section 7.1 for definition).

Suppose we inject one unit of flow at v and extract one from v, i.e., g = 1,,, = 1, — 1,. Since
g € ker(L), the potential at each vertex v’ is L1, ,,(v'). We can now define the effective resistance,
Reff(u,v) between two vertex u,v € V. If ¢ = 1,,,, = 1,, — 1,,, that is we inject one unit of flow at
u and extract one from v, then Reff(u,v) = ¢(u) — ¢(v). In other words, by (2.8.4),

Reff(u, v) = (1y s, LT1, ). (2.8.5)

Observe that effective resistance is always non-negative (see [GBS08] for the properties of the effec-
tive). The name effective resistance follows from the fact that if we replace the whole network with
a wire of conductance 1/Reff(u,v) between u and v, then ¢(u) and ¢(v) remains unchanged.

Say e is oriented from u to v. For any edge f = {u/,v'} oriented from ' to v' let i¢(f) be the

current that flows from «’ to v’ when a unit current is imposed between the endpoints of e, i.e.,
ie(f) = )‘f . <1u’—>v’7LT1u—>v>' (286)

For example, Reff(u, v) = i¢(e).
Now we are ready to describe the connection between electrical networks and A-random spanning

trees.

Proposition 2.8.2. For any graph G and any X : E — R, and any e = (u,v) € E, a A-random

spanning tree T satisfies the following
Ple € T| = i°(e) = Reff(u, v) - Ac.

Proof. For a function g : V — R, let gg” be the matrix where gg” (u,v) = g(u)-g(v) for all u,v € V.
We use the following lemma which is based on Sherman-Morrison Formula (see [GL96, Section
2.1.3]).

Lemma 2.8.3. For any symmetric matriv M € RV>*V | and any function g 1 ker(M),
det(M + gg") = det(M)(1 + (g, M g)).

Now, let ¢ = VAely . Observe that L — gg” is the same as the Laplacian matrix of the graph
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G — {e}. Therefore, by (2.8.3),

B B det'(L —gg*) det’(L)(1+ (g, Ltg))
Plee]=1-PlgT)=1- 5000 = 1- )

= )\e<1u~>vaLT1u~>v> = AERGH(U,U),

where the last equation follows by (2.8.5). O
The following properties of the function i¢(.) are useful.
Fact 2.8.4. For any two edges e, f, i°(f)\e = if (e)\s.

Proof. Say e = (u,v), f = (u',v'). Since LT is symmetric,
ie(f)ke =Ae- )\f<1u’—>v’7 LT]—u—w) =Ae- >\f<1u—>v7 LT]—u’—)v’> = if(e)/\f-

|

Fact 2.8.5 (Lyons, Peres [LP13, Exercise 4.29]). Let e, f € E not sharing the same endpoints. Let
i%(.) be the function i°(.) in the graph G/{f}. Then,

()
T

e __ e
v =1, +

2.8.3 Negative Correlation and Concentration Inequalities.

One of the important consequence of Proposition 2.8.2 is that we can show a negative correlation
between the edges of a A-random spanning tree distributions (see [LP13, Chapter 4] for a proof using

random walks).

Lemma 2.8.6. For any graph G, A : E — Ry, and any two edges e, f € E, the event that e is in a

A-random spanning tree T is negatively correlated with the event f is in T,
Ple,f€T|<PleeT] -P[f eT]. (2.8.7)
More generally, for any F C F,

Pr [Veer,e € T] < [[ Ple € 7). (2.8.8)
eel

Proof. Here, we prove (2.8.7); equation (2.8.8) can be proved similarly. First, by the Bayes rule, it

is sufficient to show that

PleeT|feT] <PleeT].
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Also, Ple € T|f € T] is the same as the probability of e being in the random spanning tree of the
graph G/{f} (in which edge f is contracted). Contracting an edge f is the same as letting Ay = oo,
or equivalently, shortcutting f in the electrical network.

By the Rayleigh monotonicity property, (see [LP13, Section 2]), if we increase the conductance
of any edge of G the effective resistance between any pair of vertices only decreases. So, by Propo-
sition 2.8.2,

Reffg/¢ry(e) < Reffg(e) = PleeT|f €T] = Ac - Reffg/q53(e) < Ac - Reffg(e) =Ple € T7.

O

One of the direct consequences of above lemma is that the set of edges of G satisfy Chernoff types
of bounds, namely, for any subset F' C E the number of edges of F'in a random tree T is concentrated

around its expectation (we will provide a much stronger characterization in Subsection 2.9.3).

Theorem 2.8.7. For each edge e, let X. be an indicator random variable associated with the event
[e € T], where T is a A\-random tree. Also, for any subset F' of the edges of G, define X(F) =
> ecr Xe. Then, we have

&0 E[X (#)]
PIX(F) > 1+ 0B < (o) -

Usually, when we want to obtain such concentration bounds, we prove that the variables {X.}.
are independent and we use the Chernoff bound. Although in our case the variables { X, }.c g are not
independent, they are negatively correlated, and it follows directly from the result of Panconesi and
Srinivasan [PS97] that the upper tail part of the Chernoff bound requires only negative correlation
and not the full independence of the random variables. So, the above theorem follows directly from
[PS97].

2.8.4 MRandom Trees and Determinantal Measures

In this last part we describe a beautiful result of Burton and Pemantle that derives the exact
probability that a set of edges appear in a random spanning tree as a determinant. Recall that :¢(f)
is the current that flows across f when a unit current is imposed between the endpoints of e (see
(2.8.6)). Burton and Pemantle [BP93] proved the following, known as Transfer-Current Theorem

which also gives the exact value of correlation between any two edges in the graph.

Theorem 2.8.8 (Burton, Pemantle [BP93]). For any distinct edges e1,...,ex € G, let M € RF*F
where M (i,5) = i%(e;). Then,
Pley,..., e € T] = det(M).
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In particular, for any two edges e and f, we get a quantitative version of the negative correlation

between e and f,
Ple,f € T) ~Ple € T] - P[f € T] = —i°(f) - ¥ (¢) = — 254 (f)".

where the last equality follows by Fact 2.8.4. Observe that if i(f) - if(e) = 0, then we can say e is
independent of f.

One of the important consequence of the above theorem is that A-random spanning tree dis-
tributions are determinantal measures (see [Lyo03] for the definition of determinantal measures).

Therefore, they are special cases of strongly Rayleigh measures.

2.9 Strongly Rayleigh Measures

In this section we continue discussing properties of A-random spanning trees. But instead of directly
working with these probability distributions we discuss a more general class, called strongly Rayleigh
probability measures. It turns out that, strongly Rayleigh measures satisfy several properties that
will be crucially used in analyzing our algorithm for the traveling salesman problem. While dis-
cussing properties of the strongly Rayleigh measures, we provide several examples and we discuss
the consequences to the A\-random spanning tree distributions.

Most of the materials of this section are based on a recent work of Borcea, Brandén and Liggett
[BBLO09] on strongly Rayleigh probability measures. Strongly Rayleigh measures include determi-
nantal measures (in particular uniform and A-random spanning tree measures), product measures,
etc. They also enjoy all the virtues of negative dependence and negative association.

Let E be the ground set of elements with m = |E| (note that we intentionally use E for the ground
set of elements, this is because later we use strongly Rayleigh measures to analyze distribution of
edges in A-random spanning trees sampled). A non-negative function y : 2 — R, is a probability

measure on subsets of F, if

Let Bg be the set of all probability measures on the Boolean algebra 2¥. For an element e € E, let
X, be the indicator random variable for e, and for S C FE, let Xg = ZeGS Xe.

Let P,,, be the set of all multi-affine polynomials in m variables g(y. : e € E) with non-negative
coefficients such that g(1,1,...,1) = 1. There is a one-one correspondence between Bg, and P,,: For
i € B we may form its generating polynomial, namely g(y) = > ¢cp w(S)y®, where y° = [lecs Ye-

A polynomial g € Py, is called real stable if g(y. : e € E) #0 whenever Im(y.) >0 foralle € E.
For example, this simply implies that a polynomial in one variable is real stable if and only if all its

roots are real (this is because if ¢ € C is a root of g € Py, then so is the conjugate of ¢). A measure

www.manaraa.com



CHAPTER 2. BACKGROUND 55

u € Bg is called strongly Rayleigh if its generating function is real stable. Equivalently, Brandén
[Bra07] proved that a multi-affine polynomial g € P,, is real stable if and only if

dg (@ dg ) d%g
aye Ye’ - ayeaye/

(z)g(x),

for all z € R™, and e,e’ € E. As an example, if z, = 1 for all e € E, then g—i = E[X.]. So,
above inequality implies E [X,]-E [X.] > E[X. - X/], i.e., elements are negatively correlated in any

strongly Rayleigh measure.

2.9.1 Operations defined on Strongly Rayleigh Measures

First, we describe several operations (Projection, Conditioning and Truncation) that maintain the

strongly Rayleigh property.

Definition 2.9.1 (Projection). For any p € Br and F C E the projection of u onto 2F is the

measure p' obtained from p by restricting the samples to the subsets of E’, i.e.:

VS CFip(A)= Y uB)

SCE:SNF=5'

Borcea et al. [BBL09] show that any projection of a strongly Rayleigh measures is still a strongly
Rayleigh measure. For example, if p is a uniform measure on the spanning trees of G = (V, E),
and F = §(A) C E is the set of edges in the cut (A, A), the projection of u on 2°(4) is a strongly

Rayleigh measure.

Definition 2.9.2 (Conditioning). For any element e € E, the measure obtained from p by condi-

tioning on X, = 0 is defined as follows:

©(S")

VS'CE—{e}: /' (9):= m

Similarly, we can define the measure obtained by conditioning on X, = 1.

For example, if p is a uniform measure on the spanning trees of GG, the measure obtained by
conditioning on X, = 0 for some e € F is a uniform measure on spanning trees of G — {e}, so is a
strongly Rayleigh measure. Similarly, we can condition on the set of spanning trees that contain all
of the edges of a set S, and none of the edges of S’. More generally, for A C V', the measure obtained
by conditioning on ZeeE(A) X. =|A| =1 (i.e. having an spanning tree inside A), can be seen as a
product of a uniform spanning tree measure on G[A] and a uniform spanning tree measure on G/A
(G where all vertices of A are contracted). Such a measure is not a uniform spanning tree measure

on E, but is a product of two spanning tree measures, and so is a strongly Rayleigh measure on E.
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Borcea et al. proved something stronger, they showed for any integer k, if p is strongly Rayleigh,

then so is p conditioned on ), X, = k, First we define the truncation of a measure.
Definition 2.9.3 (Truncation). For any 1 < k < | < |E|, the truncation of u to [k,l] is the

conditional measure iy, where

Sl
VE <|S'| <1t piy(S') = D o |) 1(S)
SCE:k<|S|<I

Borcea et al. proved that if [ — k < 1, the truncation of any strongly Rayleigh measure is still a

strongly Rayleigh measure.

Theorem 2.9.4 ([BBL09, Corollary 4.18]). If u € Bg is a strongly Rayleigh probability measure
and 0 < p < q < |E| such that | — k <1, then py; is strongly Rayleigh.

For example, let p be the uniform measure on the spanning trees of G = (V, E), and S C FE.
Let 4’ be the projection of p on S, and let u” be the projection of p on S. For any 1 < k < |S|
such that k£ <1, pj, and p//_,_, are strongly Rayleigh measures. Moreover, since any spanning tree
sampled from g has exactly |V| —1 =n —1 edges, Xg = k if and only if Xg =n —1—k. So,
and /1;;_1_ . are projections of the same set spanning trees into the complementary sets .S, S.

It is worth noting that random spanning tree distributions are not closed under the projection
or truncation operations. So, once we generalize a random spanning tree distribution to a strongly
Rayleigh measure, we are allowed to use several properties that we could not use if we restrict our

analysis to the random spanning tree distributions.

2.9.2 Properties of Strongly Rayleigh Measures

Next we describe several properties of the strongly Rayleigh measures that are essential in our proofs.

We start with the negative association property.

Definition 2.9.5 (Increasing Events and Functions). An increasing event, A, on 2¥ is a collection
of subsets of E that is closed under upward containment, i.e. if A € A and A C B C E, then
B e A. Similarly, a decreasing event is closed under downward containment. An increasing function
f:2% =R, is a function where for any A C B C E, we have f(A) < f(B).

For example, an indicator function of an increasing event is an increasing function. If F is the
set of edges of a graph G, then the existence of a Hamiltonian cycle is an increasing event, and the
3-colorability of G is a decreasing event.

A measure p € By is positively associated if for any increasing functions f, g : 27 — R,

Eulf -9l 2 Eu[f]-Eulg]. (2.9.1)
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One of the fundamental inequalities in probability theory is the FKG inequality, named after For-
tuinKasteleynGinibre. FKG inequality states that for u € Bg, if u satisfies the positive lattice
condition, i.e., for any 5,5’ C E,

p(SNS) - u(SUS) = u(S) - u(Ss"),

then p is positively associated. For example, consider an Erdos-Réyni random graph distribution on
G, i.e., let u be the product distribution where each edge e € F is included with a fixed probability
p independent of other edges, and let f be the indicator function that a sample has a Hamiltonian
cycle, and g be the indicator function that a sample is not 3-colorable. It is an easy exercise that p
satisfies the positive lattice condition, so we can deduce that if we know a sample has a Hamiltonian
cycle, it is less likely that it is 3-colorable.

In this thesis we are mainly interested in measures with negative association. The definition of
negative association is not simply the inverse of (2.9.1). The reason is that no measure would satisfy
such a property: say f and g are indicator functions of a fixed e € E. Then, for all measures u € Bg,

E[f]-Elg] > E[f - g]. Instead, we require that f and g are functions of disjoint subsets of E,

Definition 2.9.6 (Negative Association). A measure u € B is negatively associated or NA if for

any increasing functions f,g: 2% — R, that depend on disjoint sets of edges,

Eu[f]-Eulgl 2 Eulf - gl

Feder and Mihail [FM92] proved that uniform measures on balanced matroids (and in particular
A-random spanning tree distributions) are negative associated. Borcea et al. in [BBL09] proved

that, more generally, strongly Rayleigh measures are negatively associated.
Theorem 2.9.7 ([BBL09]). Strongly Rayleigh measures are negatively associated.

Observe that negative association is a stronger property compared to negative correlation, since
we can prove e, e’ € E are negatively correlated by letting f, g be the indicator functions of edges

e, e’ in Definition 2.9.6. The following fact is a simple application of negative association.

Fact 2.9.8. If u is a A-random spanning tree distribution on G = (V, E), then for any S C E, and
p € R we have

1. Ye€e E—S:E, [X.|Xs >p] <E,[X]
2.Vee E—-S:E, [X6|XS gp] >E, [X]
The following corollary is a simple consequence of this:

Corollary 2.9.9. Let p be a uniform measure on spanning trees of a graph G = (V,E), S C E,
s =E, [Xs]. Recall thatrank(S) be the rank of S in the graphical matroid on G (see Section 2.3). For
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any set S C S, we have E, [Xs/|Xg =0] <E, [Xs/]+ s, and E,, [Xs/|Xg = rank(S)] > E, [Xs/] —
rank(S) + s.

Proof. First, since p is a measure on spanning trees, and each spanning tree has n — 1 = |V]| — 1
vertices, we have E [X5|Xg = 0] = E[Xg] + s, and E [X5|Xg = rank(S)] = E [Xg] — rank(S) + s.
Second, since any spanning tree selects at least zero, and at most rank(S) edges from S, the Xg =0
is a decreasing event and Xg = rank(.S) is an increasing event. So, the statement of corollary follows

from the negative association property. 0

The next important property that we describe in this part is the stochastically dominance prop-

erty on truncations of strongly Rayleigh measures.

Definition 2.9.10 ([BBL09, Definition 2.14]). For u,v € Bg, we say p stochastically dominates v
(v = ) if for any increasing event A on 2 we have pu(A) > v(A).

Borcea et al. showed that a truncation of strongly Rayleigh measures is stochastically dominated

by a truncation of a larger value:

Theorem 2.9.11 ([BBL09, Theorem 4.19]). For any a strongly Rayleigh probability measure u € By
and 1 <k <|E|, f P[Xg =k] ,P[Xg=k—1] >0, then up—1 = l.

As an example, let p be the uniform measure on spanning trees of G = (V,E), and S C FF C E.
Let 1/ be the projection of p on 2¥. Since 4/ is strongly Rayleigh, we have uj, < pj,,, for any
integer k£ > 0, where pj, pj,, are well defined. Therefore, for any [ € R

[)(S > ” > PM;[)(S > ”.

’
Py

2.9.3 Properties of Rank Function of Strongly Rayleigh Measures

In this part we describe the ultra log-concavity (ULC) property of the rank function of strongly
Rayleigh measures. Recall that in Subsection 2.8.3 we proved the upper-tail of Chernoff-bound for
A-random spanning tree distributions on any subset of edges using the negative correlation property.
In this section we show that there is a direct way to prove all Chernoff types of bounds for A-random
spanning tree distributions.

Let u € Bg be a strongly Rayleigh measure. The rank sequence of u is the sequence
P[}(E :ZO],PW)(E :il],...,Pﬂ)(E ::ﬂﬂ.

Let g(y) be the generating polynomial of u. The diagonal specialization of u, g(.) is a univariate
polynomial obtained by pretending g(.) as a univariate polynomial (i.e., considering g(y,y,...,y)).
Observe that g(.) is the generating polynomial of the rank sequence of u. If g(¢) = 0 for ¢ € C, then

g(c,c,...,c) = 0. So, if g(.) is a real stable polynomial then so is g. Since a univariate polynomial
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with real coefficients is stable if and only if all of its roots are real, g(.) is a polynomial with real
roots.

Generating polynomials of probability distributions with real root are very well studied in the
literature. If g(.) is a univariate polynomial of degree m with real roots, then coefficients of g(.)
are corresponds to the probability density function of the convolution of a set of m independent
Bernoulli random variables. In other words, there are m independent Bernoulli random variables
By, ..., B, with success probabilities p1,...,pm € [0,1] such that the probability that exactly k

variables succeed is the coefficient of y* in g(.).

Fact 2.9.12. [BBL09, Pit97] The rank sequence of a strongly Rayleigh measure is the probabil-
ity distribution of the number of successes in m independent trials for some sequence of success

probabilities p1, ..., pm € [0,1].

Now, if ¢ is a A-random spanning tree measure, and p’ is the projection of y on S C FE, then
the rank sequence of y/, equivalently the distribution of Xg, is the same as the distribution of |S|
independent bernoulli random variables. So, all Chernoff bounds that hold for independent bernoulli
random variables hold for Xg as well.

The distribution of the number of successes of m independent trials is well studied in the literature
[Dar64, Hoeb6, Gle75, Wan93, Pit97]. Dorrach [Dar64] proved that such a distribution is unimodal
(i.e., it has a single mode), and the mode differs from the mean by less than 1. Recall that the
mode is the value at which the probability mass function takes its maximum value. Moreover, by
Newton’s inequality [HLP52], a sum of independent bernoulli random variables is an Ultra Log-

concave distribution.

Definition 2.9.13 (Ultra Log Concavity [BBL09, Definition 2.8]). A real sequence {ax}7’, is log-
concave if a3 > ag—1 - ag1 for all 1 < k < m —1, and it is said to have no internal zeros if the
indices of its non-zero terms form an interval (of non-negative integers). We say that a non-negative
sequence {a}7", is ULC (ultra log-concave) if the sequence {ar/('})}ity is log-concave and have

no internal zeros.
The following proposition follows,

Proposition 2.9.14 ([HLP52, Dar64, BBL09]). The rank sequence of any strongly Rayleigh measure

is ULC, unimodal, and its mode differs from the mean by less than 1.

Suppose p € B is a strongly Rayleigh measure, and let E[Xg] = p such that k <p<k+1. In
the rest of this section we would like to lower bound P [X, = k| and P[X, = k + 1] with a function
of p, k that is independent of | E|.

For p € [0,m], let B,,(p) be the set of all probability distribution of the number of successes in

m independent trials such that the expected number of successes is p. For any integer & > 0 and
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any p € [0,m], let

Ber(p, k) := . ”Ié%n ) P, [exactly k trials succeed] . (2.9.2)

First, observe that if |k — p| > 1, then the distribution with m = [p] trials such that |p]
of Bernoullis succeed with probability 1 (and the only possible last one succeed with probability
p — |p]) implies Ber(p, r) = 0. Therefore, we assume |k — p| < 1. Let u* € B,,(p) be a minimizer of
Ber(p, k). Hoeffding [Hoe56, Corollary 2.1] showed that Bernoullis take only one of three different
success probabilities, 0, z,1, in p*, where x is any number in [0, 1]. Since p* is allowed to have any
arbitrary number of trials m > 0, we can further assume that none of the success probabilities in p*
is 0. Let

Bin(o, ) = iy () (/) (1 = /).

m>p
Let 0 < I* < min{p, k} be the number of Bernoullis in p* that have success probability 1. Then,
Ber(p, k) = Bin(p — I*,k — I*). So,for k — 1 <p < k+1,

Ber(p, k) = min{Bin(p, k),Bin(p — 1,k — 1),...,Bin(p — k +I[p < k], L[p < k])}. (2.9.3)

So, to lower bound Ber(p, k), it is sufficient find a lower bound Bin(p — I,k — [) for any integer
0<I<k-I[p<k.

Lemma 2.9.15. For any integer k> 1 and k — 1 <p <k,

Bin(p, k) > (%)k e P

and for any k <p<k+1,

k m* — m*
Bin(p, k) > (%) 'min{(l — 75*) k, (1 - m*p+ 1) +1}.

where m* = |p+1].
Proof. Since, k > 1, for any m > max{p, k},

mk

<7IZ> (p/m)* (1 = pfm)™* = T L1 = pmym

Since m must be an integer, if m = p, then p = k. So, Bin(p, k) = 1 and we are done. Otherwise, if
m = m*, we are done by above equation. So, assume m > m* + 1.
The lemma follows from the fact that (1 —p/z)*~* is an increasing function of x for z > k when

p <k and (1 —p/x)® is an increasing function of x for x > p.
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First, assume that p < k. For all z > k,

(1 —p/x)=*

PIOTZ — (1~ pfy =t (tog(1 — pfa) + 220

z?(1 —p/x)

We show that the RHS is non-positive. Computing the Maclaurin series of

log(1—p/x)+ % Z%P/x +2 /) gzp/w Z:D/:v‘—*’;j p/x

where the last inequality uses p < k. This completes the first conclusion of the lemma. To prove

the second conclusion we just need to let £k = 0 in the above argument and we get

log(1 —p/x) + W Zz—loo (p/x)' Z(P/%')

This completes the proof of lemma. O
Now, we are ready to lower bound Ber(p, k).

Proposition 2.9.16. For any integer k, and k —1 < p <k,
Ber(p,k) > (p—k+1) - e

Otherwise, if k <p <k-+1,

(.

B > minq1 —
er(p, k) > min { PR 12

Proof. The proof is a simple algebraic manipulation, and follows from the following inequalities,
First, for p > 1 and m* = [p+ 1],

- —1
1-2 <L and 1- —L <122
m* m* —1 m*+1 m*
Second, if 1 < p < k, then
p_l)k—l &
- < k).
(7=5)  <G/k
Otherwise if p > k > 1, then (p/k)* > 1. O

Next we describe a simple example to show an application of the above proposition.

Example 2.9.17. Let p be a A-random spanning tree distributions, and let v € V such that
E[X(6(v)) =2]. Then,

P[X(5(v)) = 2] > Ber(2,2) > min{(1 — 2/3), (1 — 2/4)*} = 1/16.
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In other words, v will have an even degree in a random tree T with probability at least 1/16.
If we do a more careful analysis we can improve 1/16 to 1/e. Roughly speaking, we should first
use the fact that in any spanning tree T the degree of v is at least 1. So, indeed P [X (§(v)) = 2] >

Ber(1,1). Furthermore, the minimizer of Ber(1,1) is the poisson distribution of rate 1.

In the final example we show that the bound 1/e in the above example (that we did not prove

rigorously) is tight.

Example 2.9.18. Let G be a complete graph and let p be a uniform spanning tree on G. By
symmetry, the expected degree of each vertex is 2(1—1/n). Next, we show that the degree distribution
of each vertex is essentially one plus a poisson distribution of rate 1 when n goes to infinity.

Using Priifer code there is a one-to-one correspondence between the spanning trees of G and all
sequences of length n — 2 of vertices of V', where the degree of a vertex v in a tree T is the number
of occurrences of v in the corresponding sequence plus one. But the distribution of the number
of occurrences of v in a uniformly random sequence of length n — 2 of V is essentially a poisson

distribution. More precisely, the probability that v appears exactly once is

(”IQ> 1 (1- l)"_s ~(1—1/n)" ~1/e.

n n

where the approximations become equality when n — oo. So the degree of each vertex is 2 with

probability at most 1/e.
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New Machineries

3.1 Rounding by Sampling Method

In this section we describe the rounding by sampling method. We describe the approach by rounding
feasible solutions of an LP relaxation of TSP (see LP (2.4.1)). Let G = (V, E,x) be the underlying
graph of a feasible solution x of LP (2.4.1).

Let us first describe the result of applying the classical randomized rounding method of Raghavan
and Thompson [RT87]. In this method we construct a new H by independently rounding each edge
of the LP solution. More precisely, for each edge e include e in H with probability z. independent
of other edges. Let X, be a random variable indicating that e € H. The two main properties of the

independent randomized rounding are the following.
i) Any linear function of variables X.’s will remain the same in expectation, i.e., for any f: E — R,
E lz f(e)Xe] = Z fle)xe.
eeE e€lE
For example, E [c¢(H)] = ¢(x).

ii) Since the variables X, for e € E are independent, we can use strong concentration bounds
such as Chernoff bounds to argue that any Lipschitz function of these indicator variables is

concentrated around its expected value.

However, this method does not preserve combinatorial properties of the LP solution. Although
G is fractionally 2-edge connected, H may be disconnected with high probability.
Let us provide a concrete example. Let G be a complete graph where z,, = 2/(n — 1) and

c(u,v) =1 for all u,v € V. It is easy to see that, for each v € V, the degree of v in H is zero with

63
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probability
(1—-2/(n—1)""" ~exp(—2).

So, with high probability, H has n - exp(—2) degree zero vertices. So, not only is H disconnected, it
has ©(n) many connected components.

Now, let us describe the rounding by sampling method. Our goal is to provide a rounding method
that preserves the underlying combinatorial structure of x while satisfying the two main properties of
the independent randomized rounding method as much as possible. The first observation is that we
can write x as a point in an integral polytope, in this case the spanning tree polytope. In Fact 2.4.1

we showed that for any feasible solution x of LP (2.4.1), the vector
z=(1-1/n)x (3.1.1)

is in LP (2.4.3). Any feasible point of a polytope can be written as a convex combination of vertices
of that polytope (see Theorem 2.2.1). So, we can write z as a convex combination of vertices of
the spanning tree polytope. However, we know that the vertices of the spanning tree polytope are

integral spanning trees of our graph G. So, we can write,
z=aoa111+ ...+ apT}.

where 77, ..., T are integral spanning trees of G. Any convex-combination defines a distribution.
Therefore, we can define a distribution p, where Py, [T = T;] = o;. Now, we can round the solution
x simply by choosing a random spanning tree from p. Observe that by definition p preserves the
marginal probabilities imposed by z, Py, [e € T] = z.. Therefore, the quantitative properties are

preserved in expectation: for any function f:V — R,

P, [Z f(e)Xe] = fle)z. (3.1.2)

ecE eclk

For example,
E[e(T)] = e(z) = (1 = 1/n)e(x).

Furthermore, unlike the independent randomized rounding method, the rounded solution is always
connected.

An, Kleinberg and Shmoys [AKS12] used the above simple idea to design an improved approx-
imation algorithm for the TSP path problem. The Algorithm 1 for the online stochastic matching
problem applies this idea to the matching polytope. Also, in a joint work with Laekhunakit and
Singh [LOS12], we use this idea to design an approximation algorithm for the minimum strongly
connected subgraph problem. Unfortunately, it turns out that this idea is not enough to break the

3/2 approximation algorithm of Christofides [Chr76] even on a Graphic metric. If we write the
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Figure 3.1.1: The left graph shows a feasible solution of LP (2.4.1) for an instance of Graphic TSP.
The solid edges have fraction 1 and the dashed edges have fraction 1/2, and the cost of each edge is
1. In the right we write the vector z = (1 — 1/n)x as a convex combination of spanning trees. Note
that the cost of the minimum cost matching on the odd degree vertices of any of the spanning trees
in the support of the distribution is 7, approximately half of ¢(x).

fractional solution for the family graphs in the left graph of Figure 3.1.1 as a convex combination
of spanning trees as shown in the right, then as n goes to infinity, the cost of the minimum cost
perfect matching on the odd degree vertices of any spanning tree in the support of the distribution
converges to ¢(x)/2.

Let us give some intuitions for the above failure. Roughly speaking, the reason is that the simple
rounding by sampling method does not satisfy property (ii) of the independent randomized rounding
method. Using the Chernoff bound, one can show that, in a sample from the independent randomized
rounding method, the degree of every vertex is 2 with constant probability. On the other hand, since
we chose p in the above argument arbitrarily, we don’t have any bound on the correlation between
different edges. Although the expected degree of every vertex in a sample tree is 2(1 — 1/n), in the
above example, almost all vertices have odd degree with high probability. Therefore, the cost of the
minimum matching on the odd degree vertices of the tree is about n/2.

In summary, although the rounding by sampling method promises that the rounded solution
is connected, it may lose the parity of the degree of vertices or other structural properties of LP
solution. In the rest of this section we show that if we carefully choose the distribution p, we
are guaranteed to preserve (ii) and indeed almost all advantages of the independent randomized
rounding method.

There are many ways to write a feasible point of a polytope as a convex combination of its ver-
tices. Our idea is to use a distribution that maximizes the randomness while preserving the marginal
probability of the edges. Roughly speaking, we don’t want to enforce any additional artificial struc-
ture when writing z as a convex combination of spanning trees. More formally, we write z as a

distribution of spanning trees that has the maximum possible entropy among all distributions that
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preserve marginal probability of edges. Asadpour and Saberi first studied and used the mazimum
entropy rounding scheme for sampling a random matching in a bipartite graph with given marginal
probabilities [AS07, AS09].

3.1.1 Maximum Entropy Rounding by Sampling Method

Let 7 be the collection of all the spanning trees of G = (V,E). Recall that the entropy of a
probability distribution p : 7 — Ry, is simply ) ;. —p(T)log(p(T)). The maximum entropy
distribution p*(-) with respect to given marginal probabilities z is the optimum solution of the

following convex program (CP):

inf > p(T) logp(T)

TeT

subject to Zp(T) =z Ve € E, (3.1.3)
T>e
p(T) 20 VT eT.

The above convex program is feasible whenever z belongs to the spanning tree polytope P defined
on G = (V, E). As the objective function is bounded and the feasible region is compact (closed and
bounded), the infimum is attained and there exists an optimum solution p*(-). Furthermore, since
the objective function is strictly convex, this maximum entropy distribution p*(-) is unique.

The value p*(T) determines the probability of sampling any tree T in the maximum entropy
rounding scheme. Note that it is implicit in the constraints of this convex program that, for any

feasible solution p(.), we have Y, p(T") = 1 since

n—1=Y z=> Y pT)=mn-1))_ pT).

ecE ecE Tse T

Let OPTgy denote the optimum value of convex program (3.1.3). Observe that if we remove
the equality constraint the optimum distribution of the above convex program is just the uniform

"=2 spanning trees [Cay89], OPT gy always

spanning tree distribution. Since any graph has at most n
satisfies

OPTgne > log(1/|T|) > —log(n™" %) > —nlogn. (3.1.4)

We now want to show that, if we assume that the vector z is in the relative interior of the
spanning tree polytope of G then p*(T") > 0 for every T' € T and p*(T') admits a simple exponential
formula (see Theorem 3.1.1 below). Note that the vector z* obtained from the LP relaxation of the
ATSP indeed satisfies this assumption (see Fact 2.4.1).

For this purpose, we write the Lagrange dual to CP (3.1.3), see for example [Nem05]. For

every e € F, we associate a Lagrange multiplier §. to the constraint corresponding to the marginal

www.manaraa.com



CHAPTER 3. NEW MACHINERIES 67

probability z., and define the Lagrange function by

L(p,6) =Y p(T)logp(T) = > 4. (ZP(T)_Ze>-

TeT ecE T>oe

This can also be written as:

Z(Sze+z< )log p(T Za)

ecE TeT ecT

The Lagrange dual to CP (3.1.3) is now
sup inf L(p,J). (3.1.5)
5 p=0

The inner infimum in this dual is easy to solve. As the contributions of the p(T)’s are separable,

we have that, for every T' € T, p(T) must minimize the convex function
p(T)log p(T) — p(T)o(T),

where, as usual, 6(T) = > .1 d.. Taking derivatives, we derive that

eeT
0=1+logp(T)—4(T),

or
p(T) = M1, (3.1.6)

Thus,

1nf L(p,d Z Oeze — Z -1,

eckE TeT

Using the change of variables v, = §, — ﬁ for e € E, the Lagrange dual (3.1.5) can therefore be
rewritten as

sup 1+ Z ZeYe — Z SIS (3.1.7)

ecE TeT

Our assumption that the vector z is in the relative interior of the spanning tree polytope implies

that z can be expressed as a convex combination of all spanning trees in 7 such that the coefficient

corresponding to any spanning tree is positive. But this means that there is a point p(.) in the

relative interior of program (3.1.3). So, the convex program (3.1.3) satisfies the Slater’s condition.

This implies that the sup in (3.1.7) is attained by some vector v*, and the Lagrange dual value equals

the optimum value OPTg,; of our convex program (see Section 2.2 for background). Furthermore,

we have that the (unique) primal optimum solution p* and any dual optimum solution +* must
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satisfy
L(p,v") = L(p*,7") = L(p*,), (3.1.8)

for any p > 0 and any -y, where we have implicitly redefined L due to our change of variables from

d to 7. Therefore, p* is the unique minimizer of L(p,~*) and from (3.1.6), we have that
p*(T) = e D), (3.1.9)

Observe that the above distribution is indeed a A-random spanning tree distribution for A, = e

(see Section 2.8 for background). Summarizing, the following theorem holds.

Theorem 3.1.1. Given a vector z in the relative interior of the spanning tree polytope on G =
(V, E), there exist \o for all e € E such that if we sample a spanning tree T of G according to
p*(T) := [leer Ae then Ple € T] = 2z, for every e € E.

It is worth noting that the requirement that z is in the relative interior of the spanning tree
polytope (as opposed to being just in this polytope) is necessary (the fact that being in the spanning
tree polytope was not sufficient had been observed before, see [LP13, Exercise 4.19]). Let G be a
triangle and z be the vector (%, %, 1). In this case, z is in the polytope (but not in its relative
interior) and there are no A}’s that would satisfy the statement of the theorem (however, one can
get arbitrarily close to z, for all e € E).

One we have a random spanning tree distribution we can use all properties of them that we
discussed in Section 2.8 and Section 2.9. For example, suppose z is a fractional spanning tree
obtained from a feasible solution of Held-Karp relaxation for TSP (2.4.1), and let A : E — R, be
the corresponding A-random spanning tree distribution that preserves z. as the marginal probability

of any edge e. Since for any v € V,
E(IT 0 8(v)]] = 2(1 - 1/n),

by Example 2.9.17 a constant fraction of the vertices of T' have an even degree.
In the next example we describe a maximum entropy distribution of spanning trees for a given

marginal vector z.

Example 3.1.2. Consider the family of fractional spanning trees illustrated at the left of Figure 5.1.2
for a large n. The solid edges have fraction 1 — 1/n and the dashed edges have fraction (1 —1/n)/2.
By symmetry, the weights Ae of the solid edges are the same, and M. of the dashed edges are the
same. Let us normalize the weights such that A = 1 for all dashed edges. Then, the weights of the
solid edges will be n — 1.5 (we verified numerically).

Note that each spanning tree has a non-zero probability. But, it turns out that with high probability

a random sample has a very nice shape. First, since the solid edges have a large weight, with high
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Figure 3.1.2: The left graph shows a fractional spanning tree obtained from a feasible solution of LP
(2.4.1), where the solid edges have fraction 1 —1/n, and the dashed edges have fraction (1—1/n)/2.
In the maximum entropy distribution the A\ value of the solid edges is about n times the dashed
edges. In the right we show a sample from the corresponding A-random spanning tree distribution.

probability all of them (except possibly a constant number) will be in a random spanning tree. We
say two dashed edges are paired, if their endpoints are matched by two solid edges (a paired dashed
edges are shown in the left of Figure 5.1.2 inside a trapezoid). Let e,e’ be a paired dashed edges;
we show a random tree T has exactly one of them with high probability. Suppose the endpoints of
e, e’ are matched by the edges f, f'. Since by the union bound f, f' € T with probability 1 — O(1/n)
the probability that both of e, e’ are in T is O(1/n). On the other hand, the probability that none of
e, isin T is O(1/n), because any spanning tree contains at least one edge of each (except possibly
one) of the paired edges. So, with high probability T contains exactly one of e,e’. Furthermore, since
Ae = A, T will choose one of the uniformly at random. We shown a random spanning tree with
these properties at the right of Figure 3.1.2

Now suppose we have an instance of Graphic-TSP where c(e) =1 for all edges of our graph. Re-
call that this graph is a tight example for Christofides’ algorithm, see Figure 2.5.3, and the rounding
by sampling method without exploiting the mazimum entropy distribution also gives a 3/2 approzi-
mation, see Figure 3.1.1. It is an instructive exercise to show that the cost of the minimum perfect
matching on odd degree vertices of the a A-random spanning tree is n/4+ O(1) with high probability.
So, maximum entropy rounding by sampling method has a 5/4-approximation ratio on this family of

nstances.

As a final remark observe that one can study maximum entropy distributions of the convex hull
P of any set of discrete objects on a ground set of elements. Above analysis shows that the maximum
entropy distribution is always a production distribution, i.e., one can assign non-negative weights
to the elements of the ground set such that the probability of each of the objects in the maximum
entropy distribution preserving a given marginal vector in the interior of P is proportional to the
product of the weight of its elements. In order to use these distributions in computation first we need
to compute the weight of the ground elements and second we need to be able to sample efficiently from

the corresponding product distribution. Interestingly, very recently, Singh and Vishnoi [SV13] show
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that these two problems are equivalent (see more details in the next section). In Subsection 2.8.1
we showed how to efficiently sample from a A-random distribution of spanning trees. In the next
section we design an efficient algorithm to approximately find the weight of the edges in the maximum

entropy distribution.

3.1.2 Computation of Maximum Entropy Distribution

In this part we design an algorithm to find a A-random spanning tree distribution that preserves
the marginal probability of all the edges within multiplicative error of 1+ e¢. Our algorithm runs in
time polynomial in n, 1/€, — log zmin where zp;, = minecg 2. is the smallest non-zero value assigned
to the edges. Note that if z = (1 — 1/n)x for x being an extreme point solution of (2.4.1) then
> g—nlog(n)

Zmin

Theorem 3.1.3. Given z in the relative interior of the spanning tree polytope of G = (V,E). For
any e/ < e < 1/4, values 7. for all e € E can be found, so that if we let Ae = exp(Fe) for all

e € E, then the corresponding A-random spanning tree distribution, [, satisfies

Z Pi[T)<(14¢€)ze, Ve€E,
TeT:Toe

i.e., the marginals are approximately preserved. Furthermore, the running time is polynomial in

n= |V|’ _IOmein and log(l/e)

Very recently, Singh and Vishnoi [SV13] generalized and improved the above theorem; they
show that for any family of discrete objects, M, and any given marginal probability vector in the
interior of the convex hull of M, one can efficiently compute the approximate weight of the ground
elements in the maximum entropy distribution if and only if there is an efficient algorithm that
approximates the weighted sum of all the objects for any given weights, i.e., an efficient algorithm
that approximates ), exp(y(M)) for any vector 7. For example, since there is an efficient
algorithm that approximates the weighted sum of all perfect matchings a bipartite graph with respect
to given weights 7, [JSV04], one can approximately compute the maximum entropy distribution of
the perfect matchings of any bipartite graph with respect to any given marginals in the interior of
the perfect matching polytope (see [SV13] for more details).

In the rest of this section we prove the above theorem. We will use the Ellipsoid method,
Theorem 2.2.2; so we just need to provide a separating hyperplane oracle, a polynomial in n bound
on the radius of a ball that contains our polytope, and an inversely polynomial in n bound on
the radius of a ball in the interior of our polytope. In [AGM™10] we also provide a combinatorial
algorithm to approximate the maximum entropy distribution that we do not include in this thesis;
we refer the interested reader to [AGM ' 10].

First, we show that the optimum value of the following convex program is the same as the
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optimum value of the original dual program (3.1.7).

sup Z ZeTVes
v e

subject to Z T < 2e Ve€e R
T>e

(3.1.10)

This is because on one hand for any vector « that is a feasible solution of above program,

1+Zze’7e_ Z GW(T) = 1+Zze')’e_% ZZG’Y(T) > 1+Zze7e_ﬁ Zze = Zzep)’ea

eek TeT ecE ecE Tse ecE eckE ecE

where the last equation holds since z is a fractional spanning tree. So the optimum of CP (3.1.10)
is at most the optimum of CP (3.1.7). On the other hand, since z is in the interior of spanning
tree polytope, there is a unique optimum ~* to CP (3.1.7) that satisfies (3.1.8), so for all e € E,
Y150 eXp(Y(T)) = > 5. 0" (T) = 2e, and ¥* is a feasible solution of (3.1.10). Furthermore,

1T+ 2yl = Y exp(" (1) =1+ Y 270 — > p (1) =Y iz

ecE TeT ecE TeET eckE

Therefore, the optimum of (3.1.7) is at most the optimum of (3.1.10). Therefore, they are equal,
and the optimum of (3.1.10) is OPTgyt.

Next, we use the ellipsoid method, Theorem 2.2.2, to find a near optimal solution of CP (3.1.10).
The main difficulty is that the coordinates of the optimizers of CP (3.1.10) are not necessarily
bounded by a function of n. First, we simply turn the optimization problem into a feasibility
problem by doing a binary search on the value of the optimum, so suppose we guess the optimum
is t. Now, instead of proving that every feasible solution of CP (3.1.10) that satisfies >, zeve > ¢
falls in a ball of radius that is a polynomial function of n, we restrict the set of feasible solutions of
(3.1.10) to the vectors whose coordinates are bounded by a polynomial function of n. Furthermore,
to ensure that the new polytope has a non-empty interior, we relax the RHS of the constraint
Y rseexp(¥(T)) < z.. More precisely, for any a > 0,M > 0 and t € R, let F(a,t, M) be the

following feasibility convex program

D zere >t
€

Y M <(1+a)ze  VeeE, (3.1.11)
T>e
- M< v <M Veec E.

The following lemma relates the above CP to CP (3.1.10).

Lemma 3.1.4. For any t < OPT gy, .7-'(6_"2/2, t,n* — n?log zmin) is non-empty.
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Proof. We say that a vector v : ' — R has a gap at an edge f € E if for any e € E, either v, < vy
or e > ¢ + gap where gap := n? — 1og zmin. Observe that for any v : F — R, the number of gaps
of v is at most |E| < (3).

In the following claim we show that if v has a gap at an edge e then we can construct another

vector 4 with fewer number of gaps while losing a small amount in the value of the objective function.

Claim 3.1.5. Let v : E — R that has at least one gap. Let Ty be a maximum spanning tree of
G with respect to weights v, i.e., Tymax = argmaxyy(T). There exists ¥ : E — R with at least one
fewer gap such that for any e € E,

T>oe T>Se

and

D zde =Yz (3.1.13)
e (&

Proof. Suppose that v has a gap at an edge e* € E. Let F':= {e € E : ¢ > 7e~ ;. Let k = rank(F)
be the size of the maximum spanning forest of F' (see Section 2.3 for background). Recall that by
definition any spanning tree of G has at most k edges from F', so z(F) < k. We reduce the 7, for all

e € F and increase it for the rest of the edges. In particular,

- Ye + % ifegF,
Ye =

'ye—A—i-f—_Al ifeeF,
where A = min.cr e — Ver — gap. Note that by the assumption of the claim A > 0. By above
definition, 4 does not have a gap at e*, and for any edge e # e*, 4 has a gap at e if v has a gap at e.

First, observe that,

;ze;}'/e :gze/)’e"i_nk—_Algze_z(F)AZgzeve'i_kA_kA:gze'Ye'

where we used z(F') < k. This proves (3.1.13).

It remains to prove (3.1.12). If a spanning tree T has exactly k edges from F', then ¥(T') = v(T),
and exp(¥(T)) = exp(y(T)). By Lemma 2.3.1 any maximum weight spanning tree of (V, E,~) or
(V, E,#) has exactly k edges of F'. Since ¥(T') = v(T) for any tree where |T'N F| = k, the maximum
spanning trees of (V, E,~) are the same as the maximum spanning trees of (V, E,%). So, Tyax i8
also a maximum weight spanning tree of (V, E, 7).

Now, suppose a spanning tree T has less than k edges in F. Since |T'N F| < k, there exists an
edge f € (Tmax N F) — T such that (TN F)U{f} is a forest of G. Therefore, the unique circuit in
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TU{f} contains an edge e ¢ F'. Thus T' = TU{f} —{e} is a spanning tree. By the definition of 7/,
V(Tmax) 2 Y(T) = A(T) = Fe + 75 > (T) + gap, (3.1.14)
which yields the desired inequality. Therefore, for any tree T,
1) < (1) 4 eV (Tmax)—gap — oY1) 4 o7 (Tmax) —g2P
where the last equality follows by the fact that |Tiax N F| = k. Now, (3.1.12) follows by the fact
that any graph at most n"~2 spanning trees [Cay89]. O

Let v* be an optimum solution of CP (3.1.10). If 4* does not have any gap we let ¥ = ~*.
Otherwise, we repeatedly apply the above claim and remove all of the gaps and find a vector 4 such

that >, ze¥e > D, 2eVe, and for any edge e € E,

Z D < Z eV (D) 4 |E|nn2e) (Tmax) =83 < o 4 n"e™™ Zmin < (1+ n_n2/2)ze. (3.1.15)
T>e T>e

where the first inequality follows by the fact that 4* has at most |F| gaps, the second inequality
follows by the feasibility of 4* in CP (3.1.10) and that 7 (Tmax) < max, z, < 1.

Since 4 does not have any gap
max ¥, — mind, < |E| - gap.
e e
So, it is sufficient to lower bound max, 4. and upper bound min, %.. Let f = argmax, 7.. By (3.1.4),

—nlogn < OPTgy = E zevs < g ZeNe < M- MaAX e
€
e €

On the other hand, by (3.1.15), €7(T) < 2 for any tree T, so min, 5, < 1. Therefore,

maxJe < minde +|E]-gap < 1+|E]-gap < n' —n?10g zmin,

meinfye > mgx&e — |E| - gap > —log(n) — |E| - gap > —n* 4+ n?log zmin-

This completes the proof of Lemma 3.1.4. 0

In Algorithm 5 we provide a separating hyperplane oracle for CP (3.1.11). Note that all the steps
of the algorithm can be done in polynomial time. The only one which may need some explanation

is computing gs(7) for some edge e and its gradient.

0 ,
Qe('y) =ee Z 67(T_{e}) and % — Vet er Z e’y(T—{e,e })

Ve

Toe T>e,e’
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Algorithm 5 Separating hyperplane oracle for CP (3.1.11)

Input: v € RIZ!
if v violates any of the linear constraints then
Return the violated inequality as a separating hyperplane.
else
Compute ge(7) = Y75, €7D for every e.
if ge.(v) < (1 + a)z, for all edges e then
report v € F(a,t, M).
else
Let é be an edge for which the constraint is violated. Compute the gradient of ga(7).
Return the hyperplane {(v' —v).Vgs(7) > 0,7" € RIF1} as a violated constraint.
end if
end if

Both of the above expressions can be computed efficiently by the matrix tree theorem (see Theo-
rem 2.8.1).

Now, we are ready to prove Theorem 3.1.3.

Proof of Theorem 3.1.3.  Let a = ¢/6. By Lemma 3.1.4, F(a, OPTgy, M) where M = n* —
n?10g Zmin is non-empty. Let v* be a point in F(a, OPTgy, M) and let B = {v: |y —v*| ., < 8},
where 8 = ¢/4n. For any v € B,

D ze%e > Y ze(; — B) > OPTan — nB = OPTpy — €/4.

Also, for any edge e € F,

S < 37 M8 < (1 4 a)z, < (14 ¢/2)z.
T>e T>e

where the last inequality follows by the assumption e < 1/4.

So B C F(e/2,0PTgy —€/4, M + ). Therefore, F(e/2, OPTgy, —€/4, M + 1) is non-empty and
contains a ball of radius 8 = €/4n and is contained in a ball of radius |F| - n which is a polynomial
function of n, —1og zm, and 1/e. Using binary search on ¢t and the ellipsoid method, we can find a
point v in F(e/2,0PTgu — €/4, M + 1) in time polynomial in n, —log zmin, and log 1/e.

Since 7 is a feasible solution of of the CP, (3.1.7). 1+ 3" 2eVe — > 1 M) < OPTgpe. On the
other hand, since v € F(e/2,OPTgy, — €/4, M + 1),

Zze% > OPTCP — 6/4.

These